Metamath Proof Explorer


Theorem yon11

Description: Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017)

Ref Expression
Hypotheses yon11.y Y=YonC
yon11.b B=BaseC
yon11.c φCCat
yon11.p φXB
yon11.h H=HomC
yon11.z φZB
Assertion yon11 φ1st1stYXZ=ZHX

Proof

Step Hyp Ref Expression
1 yon11.y Y=YonC
2 yon11.b B=BaseC
3 yon11.c φCCat
4 yon11.p φXB
5 yon11.h H=HomC
6 yon11.z φZB
7 eqid oppCatC=oppCatC
8 eqid HomFoppCatC=HomFoppCatC
9 1 3 7 8 yonval φY=CoppCatCcurryFHomFoppCatC
10 9 fveq2d φ1stY=1stCoppCatCcurryFHomFoppCatC
11 10 fveq1d φ1stYX=1stCoppCatCcurryFHomFoppCatCX
12 11 fveq2d φ1st1stYX=1st1stCoppCatCcurryFHomFoppCatCX
13 12 fveq1d φ1st1stYXZ=1st1stCoppCatCcurryFHomFoppCatCXZ
14 eqid CoppCatCcurryFHomFoppCatC=CoppCatCcurryFHomFoppCatC
15 7 oppccat CCatoppCatCCat
16 3 15 syl φoppCatCCat
17 eqid SetCatranHom𝑓C=SetCatranHom𝑓C
18 fvex Hom𝑓CV
19 18 rnex ranHom𝑓CV
20 19 a1i φranHom𝑓CV
21 ssidd φranHom𝑓CranHom𝑓C
22 7 8 17 3 20 21 oppchofcl φHomFoppCatCC×coppCatCFuncSetCatranHom𝑓C
23 7 2 oppcbas B=BaseoppCatC
24 eqid 1stCoppCatCcurryFHomFoppCatCX=1stCoppCatCcurryFHomFoppCatCX
25 14 2 3 16 22 23 4 24 6 curf11 φ1st1stCoppCatCcurryFHomFoppCatCXZ=X1stHomFoppCatCZ
26 eqid HomoppCatC=HomoppCatC
27 8 16 23 26 4 6 hof1 φX1stHomFoppCatCZ=XHomoppCatCZ
28 5 7 oppchom XHomoppCatCZ=ZHX
29 27 28 eqtrdi φX1stHomFoppCatCZ=ZHX
30 13 25 29 3eqtrd φ1st1stYXZ=ZHX