Metamath Proof Explorer


Theorem zesq

Description: An integer is even iff its square is even. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion zesq NN2N22

Proof

Step Hyp Ref Expression
1 zcn NN
2 sqval NN2= N N
3 1 2 syl NN2= N N
4 3 oveq1d NN22= N N2
5 2cnd N2
6 2ne0 20
7 6 a1i N20
8 1 1 5 7 divassd N N N2=NN2
9 4 8 eqtrd NN22=NN2
10 9 adantr NN2N22=NN2
11 zmulcl NN2NN2
12 10 11 eqeltrd NN2N22
13 1 adantr NN+12N
14 sqcl NN2
15 13 14 syl NN+12N2
16 peano2cn N2N2+1
17 15 16 syl NN+12N2+1
18 17 halfcld NN+12N2+12
19 18 13 pncand NN+12N2+12+N-N=N2+12
20 binom21 NN+12=N2+2 N+1
21 13 20 syl NN+12N+12=N2+2 N+1
22 peano2cn NN+1
23 13 22 syl NN+12N+1
24 sqval N+1N+12=N+1N+1
25 23 24 syl NN+12N+12=N+1N+1
26 2cn 2
27 mulcl 2N2 N
28 26 13 27 sylancr NN+122 N
29 1cnd NN+121
30 15 28 29 add32d NN+12N2+2 N+1=N2+1+2 N
31 21 25 30 3eqtr3d NN+12N+1N+1=N2+1+2 N
32 31 oveq1d NN+12N+1N+12=N2+1+2 N2
33 2cnd NN+122
34 6 a1i NN+1220
35 23 23 33 34 divassd NN+12N+1N+12=N+1N+12
36 17 28 33 34 divdird NN+12N2+1+2 N2=N2+12+2 N2
37 13 33 34 divcan3d NN+122 N2=N
38 37 oveq2d NN+12N2+12+2 N2=N2+12+N
39 36 38 eqtrd NN+12N2+1+2 N2=N2+12+N
40 32 35 39 3eqtr3d NN+12N+1N+12=N2+12+N
41 peano2z NN+1
42 zmulcl N+1N+12N+1N+12
43 41 42 sylan NN+12N+1N+12
44 40 43 eqeltrrd NN+12N2+12+N
45 simpl NN+12N
46 44 45 zsubcld NN+12N2+12+N-N
47 19 46 eqeltrrd NN+12N2+12
48 47 ex NN+12N2+12
49 48 con3d N¬N2+12¬N+12
50 zsqcl NN2
51 zeo2 N2N22¬N2+12
52 50 51 syl NN22¬N2+12
53 zeo2 NN2¬N+12
54 49 52 53 3imtr4d NN22N2
55 54 imp NN22N2
56 12 55 impbida NN2N22