Metamath Proof Explorer


Theorem zrhpsgnmhm

Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018)

Ref Expression
Assertion zrhpsgnmhm RRingAFinℤRHomRpmSgnASymGrpAMndHommulGrpR

Proof

Step Hyp Ref Expression
1 eqid ℤRHomR=ℤRHomR
2 1 zrhrhm RRingℤRHomRringRingHomR
3 eqid mulGrpring=mulGrpring
4 eqid mulGrpR=mulGrpR
5 3 4 rhmmhm ℤRHomRringRingHomRℤRHomRmulGrpringMndHommulGrpR
6 2 5 syl RRingℤRHomRmulGrpringMndHommulGrpR
7 eqid SymGrpA=SymGrpA
8 eqid pmSgnA=pmSgnA
9 eqid mulGrpfld𝑠11=mulGrpfld𝑠11
10 7 8 9 psgnghm2 AFinpmSgnASymGrpAGrpHommulGrpfld𝑠11
11 ghmmhm pmSgnASymGrpAGrpHommulGrpfld𝑠11pmSgnASymGrpAMndHommulGrpfld𝑠11
12 10 11 syl AFinpmSgnASymGrpAMndHommulGrpfld𝑠11
13 eqid mulGrpfld𝑠0=mulGrpfld𝑠0
14 13 cnmsgnsubg 11SubGrpmulGrpfld𝑠0
15 subgsubm 11SubGrpmulGrpfld𝑠011SubMndmulGrpfld𝑠0
16 14 15 ax-mp 11SubMndmulGrpfld𝑠0
17 cnring fldRing
18 cnfldbas =Basefld
19 cnfld0 0=0fld
20 cndrng fldDivRing
21 18 19 20 drngui 0=Unitfld
22 eqid mulGrpfld=mulGrpfld
23 21 22 unitsubm fldRing0SubMndmulGrpfld
24 13 subsubm 0SubMndmulGrpfld11SubMndmulGrpfld𝑠011SubMndmulGrpfld110
25 17 23 24 mp2b 11SubMndmulGrpfld𝑠011SubMndmulGrpfld110
26 16 25 mpbi 11SubMndmulGrpfld110
27 26 simpli 11SubMndmulGrpfld
28 1z 1
29 neg1z 1
30 prssi 1111
31 28 29 30 mp2an 11
32 zsubrg SubRingfld
33 22 subrgsubm SubRingfldSubMndmulGrpfld
34 zringmpg mulGrpfld𝑠=mulGrpring
35 34 eqcomi mulGrpring=mulGrpfld𝑠
36 35 subsubm SubMndmulGrpfld11SubMndmulGrpring11SubMndmulGrpfld11
37 32 33 36 mp2b 11SubMndmulGrpring11SubMndmulGrpfld11
38 27 31 37 mpbir2an 11SubMndmulGrpring
39 zex V
40 ressabs V11mulGrpfld𝑠𝑠11=mulGrpfld𝑠11
41 39 31 40 mp2an mulGrpfld𝑠𝑠11=mulGrpfld𝑠11
42 34 oveq1i mulGrpfld𝑠𝑠11=mulGrpring𝑠11
43 41 42 eqtr3i mulGrpfld𝑠11=mulGrpring𝑠11
44 43 resmhm2 pmSgnASymGrpAMndHommulGrpfld𝑠1111SubMndmulGrpringpmSgnASymGrpAMndHommulGrpring
45 12 38 44 sylancl AFinpmSgnASymGrpAMndHommulGrpring
46 mhmco ℤRHomRmulGrpringMndHommulGrpRpmSgnASymGrpAMndHommulGrpringℤRHomRpmSgnASymGrpAMndHommulGrpR
47 6 45 46 syl2an RRingAFinℤRHomRpmSgnASymGrpAMndHommulGrpR