Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | zrhpsgnmhm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | zrhrhm | |
3 | eqid | |
|
4 | eqid | |
|
5 | 3 4 | rhmmhm | |
6 | 2 5 | syl | |
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 7 8 9 | psgnghm2 | |
11 | ghmmhm | |
|
12 | 10 11 | syl | |
13 | eqid | |
|
14 | 13 | cnmsgnsubg | |
15 | subgsubm | |
|
16 | 14 15 | ax-mp | |
17 | cnring | |
|
18 | cnfldbas | |
|
19 | cnfld0 | |
|
20 | cndrng | |
|
21 | 18 19 20 | drngui | |
22 | eqid | |
|
23 | 21 22 | unitsubm | |
24 | 13 | subsubm | |
25 | 17 23 24 | mp2b | |
26 | 16 25 | mpbi | |
27 | 26 | simpli | |
28 | 1z | |
|
29 | neg1z | |
|
30 | prssi | |
|
31 | 28 29 30 | mp2an | |
32 | zsubrg | |
|
33 | 22 | subrgsubm | |
34 | zringmpg | |
|
35 | 34 | eqcomi | |
36 | 35 | subsubm | |
37 | 32 33 36 | mp2b | |
38 | 27 31 37 | mpbir2an | |
39 | zex | |
|
40 | ressabs | |
|
41 | 39 31 40 | mp2an | |
42 | 34 | oveq1i | |
43 | 41 42 | eqtr3i | |
44 | 43 | resmhm2 | |
45 | 12 38 44 | sylancl | |
46 | mhmco | |
|
47 | 6 45 46 | syl2an | |