Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
2itscp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
2itscp.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
4 |
|
2itscp.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
5 |
|
2itscp.d |
⊢ 𝐷 = ( 𝑋 − 𝐴 ) |
6 |
|
2itscp.e |
⊢ 𝐸 = ( 𝐵 − 𝑌 ) |
7 |
|
2itscp.c |
⊢ 𝐶 = ( ( 𝐷 · 𝐵 ) + ( 𝐸 · 𝐴 ) ) |
8 |
|
2itscp.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
9 |
|
2itscp.l |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
10 |
|
2itscp.n |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) ) |
11 |
|
2itscp.q |
⊢ 𝑄 = ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) |
12 |
|
2itscp.s |
⊢ 𝑆 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) |
13 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → 𝐵 ∈ ℂ ) |
15 |
4
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → 𝑌 ∈ ℂ ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → 𝐵 ≠ 𝑌 ) |
18 |
14 16 17
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → ( 𝐵 − 𝑌 ) ≠ 0 ) |
19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝑌 → ( 𝐵 − 𝑌 ) ≠ 0 ) ) |
20 |
3
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝑋 ∈ ℂ ) |
22 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝐴 ∈ ℂ ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝐴 ≠ 𝑋 ) |
25 |
24
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝑋 ≠ 𝐴 ) |
26 |
21 23 25
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → ( 𝑋 − 𝐴 ) ≠ 0 ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝑋 → ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
28 |
6
|
neeq1i |
⊢ ( 𝐸 ≠ 0 ↔ ( 𝐵 − 𝑌 ) ≠ 0 ) |
29 |
5
|
neeq1i |
⊢ ( 𝐷 ≠ 0 ↔ ( 𝑋 − 𝐴 ) ≠ 0 ) |
30 |
28 29
|
anbi12i |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ↔ ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
31 |
|
2re |
⊢ 2 ∈ ℝ |
32 |
31
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
33 |
3 1
|
resubcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℝ ) |
34 |
5 33
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
35 |
34 1
|
remulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐴 ) ∈ ℝ ) |
36 |
2 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) ∈ ℝ ) |
37 |
6 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
38 |
37 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐸 · 𝐵 ) ∈ ℝ ) |
39 |
35 38
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ∈ ℝ ) |
40 |
32 39
|
remulcld |
⊢ ( 𝜑 → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ∈ ℝ ) |
41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ∈ ℝ ) |
42 |
37
|
resqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
43 |
2
|
resqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
44 |
42 43
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
45 |
34
|
resqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ ) |
46 |
1
|
resqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
47 |
45 46
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
48 |
44 47
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
50 |
8
|
resqcld |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
51 |
50 46
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
52 |
42 51
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
53 |
50 43
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
54 |
45 53
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℝ ) |
55 |
52 54
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ∈ ℝ ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ∈ ℝ ) |
57 |
35 38
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐴 ) − ( 𝐸 · 𝐵 ) ) ∈ ℝ ) |
58 |
57
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐷 · 𝐴 ) − ( 𝐸 · 𝐵 ) ) ↑ 2 ) ) |
59 |
1 2 3 4 5 6
|
2itscplem1 |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐸 · 𝐵 ) ) ↑ 2 ) ) |
60 |
58 59
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) |
61 |
48 40
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ↔ ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ≤ ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) |
62 |
60 61
|
mpbid |
⊢ ( 𝜑 → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ≤ ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ≤ ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
64 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
65 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
66 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
67 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℝ ) |
68 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
69 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
70 |
|
simpl |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) → 𝐸 ≠ 0 ) |
71 |
|
sqn0rp |
⊢ ( ( 𝐸 ∈ ℝ ∧ 𝐸 ≠ 0 ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
72 |
37 70 71
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
73 |
46 43 50
|
ltaddsub2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
74 |
9 73
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) |
76 |
68 69 72 75
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) < ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
77 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
78 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
79 |
|
simpr |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) → 𝐷 ≠ 0 ) |
80 |
|
sqn0rp |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
81 |
34 79 80
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
82 |
46 43 50
|
ltaddsubd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
83 |
9 82
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
85 |
77 78 81 84
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) < ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
86 |
64 65 66 67 76 85
|
lt2addd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
87 |
41 49 56 63 86
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
88 |
87
|
ex |
⊢ ( 𝜑 → ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
89 |
30 88
|
syl5bir |
⊢ ( 𝜑 → ( ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
90 |
19 27 89
|
syl2and |
⊢ ( 𝜑 → ( ( 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
91 |
90
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
92 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝑋 ↔ 𝐴 = 𝑋 ) |
93 |
|
eqcom |
⊢ ( 𝐴 = 𝑋 ↔ 𝑋 = 𝐴 ) |
94 |
20 22
|
subeq0ad |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) = 0 ↔ 𝑋 = 𝐴 ) ) |
95 |
94
|
biimprd |
⊢ ( 𝜑 → ( 𝑋 = 𝐴 → ( 𝑋 − 𝐴 ) = 0 ) ) |
96 |
93 95
|
syl5bi |
⊢ ( 𝜑 → ( 𝐴 = 𝑋 → ( 𝑋 − 𝐴 ) = 0 ) ) |
97 |
92 96
|
syl5bi |
⊢ ( 𝜑 → ( ¬ 𝐴 ≠ 𝑋 → ( 𝑋 − 𝐴 ) = 0 ) ) |
98 |
5
|
eqeq1i |
⊢ ( 𝐷 = 0 ↔ ( 𝑋 − 𝐴 ) = 0 ) |
99 |
28 98
|
anbi12i |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ↔ ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) = 0 ) ) |
100 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 0 ∈ ℝ ) |
101 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
102 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
103 |
37
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐸 ↑ 2 ) ) |
104 |
2
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 ↑ 2 ) ) |
105 |
42 43 103 104
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 0 ≤ ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
107 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
108 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
109 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 𝐸 ≠ 0 ) |
110 |
37 109 71
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
111 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) |
112 |
107 108 110 111
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) < ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
113 |
100 101 102 106 112
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 0 < ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
114 |
|
oveq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 · 𝐴 ) = ( 0 · 𝐴 ) ) |
115 |
114
|
adantl |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) → ( 𝐷 · 𝐴 ) = ( 0 · 𝐴 ) ) |
116 |
22
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝐴 ) = 0 ) |
117 |
115 116
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐷 · 𝐴 ) = 0 ) |
118 |
117
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = ( 0 · ( 𝐸 · 𝐵 ) ) ) |
119 |
38
|
recnd |
⊢ ( 𝜑 → ( 𝐸 · 𝐵 ) ∈ ℂ ) |
120 |
119
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝐸 · 𝐵 ) ) = 0 ) |
121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 0 · ( 𝐸 · 𝐵 ) ) = 0 ) |
122 |
118 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = 0 ) |
123 |
122
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = ( 2 · 0 ) ) |
124 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
125 |
123 124
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = 0 ) |
126 |
|
sq0i |
⊢ ( 𝐷 = 0 → ( 𝐷 ↑ 2 ) = 0 ) |
127 |
126
|
adantl |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) → ( 𝐷 ↑ 2 ) = 0 ) |
128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐷 ↑ 2 ) = 0 ) |
129 |
128
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
130 |
53
|
recnd |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
131 |
130
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
133 |
129 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
134 |
133
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + 0 ) ) |
135 |
52
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
136 |
135
|
addid1d |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + 0 ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + 0 ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
138 |
134 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
139 |
113 125 138
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
140 |
139
|
ex |
⊢ ( 𝜑 → ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
141 |
99 140
|
syl5bir |
⊢ ( 𝜑 → ( ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) = 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
142 |
19 97 141
|
syl2and |
⊢ ( 𝜑 → ( ( 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
143 |
142
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
144 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝑌 ↔ 𝐵 = 𝑌 ) |
145 |
13 15
|
subeq0ad |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑌 ) = 0 ↔ 𝐵 = 𝑌 ) ) |
146 |
145
|
biimprd |
⊢ ( 𝜑 → ( 𝐵 = 𝑌 → ( 𝐵 − 𝑌 ) = 0 ) ) |
147 |
144 146
|
syl5bi |
⊢ ( 𝜑 → ( ¬ 𝐵 ≠ 𝑌 → ( 𝐵 − 𝑌 ) = 0 ) ) |
148 |
6
|
eqeq1i |
⊢ ( 𝐸 = 0 ↔ ( 𝐵 − 𝑌 ) = 0 ) |
149 |
148 29
|
anbi12i |
⊢ ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ↔ ( ( 𝐵 − 𝑌 ) = 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
150 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 0 ∈ ℝ ) |
151 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
152 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℝ ) |
153 |
34
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 ↑ 2 ) ) |
154 |
1
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ 2 ) ) |
155 |
45 46 153 154
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 0 ≤ ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
157 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
158 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
159 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐷 ≠ 0 ) |
160 |
34 159 80
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
161 |
43
|
recnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
162 |
46
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
163 |
161 162
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
164 |
163 9
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
165 |
43 46 50
|
ltaddsub2d |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
166 |
164 165
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
168 |
157 158 160 167
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) < ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
169 |
150 151 152 156 168
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 0 < ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
170 |
|
oveq1 |
⊢ ( 𝐸 = 0 → ( 𝐸 · 𝐵 ) = ( 0 · 𝐵 ) ) |
171 |
170
|
adantr |
⊢ ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) → ( 𝐸 · 𝐵 ) = ( 0 · 𝐵 ) ) |
172 |
13
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝐵 ) = 0 ) |
173 |
171 172
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐸 · 𝐵 ) = 0 ) |
174 |
173
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = ( ( 𝐷 · 𝐴 ) · 0 ) ) |
175 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐷 ∈ ℝ ) |
176 |
175
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐷 ∈ ℂ ) |
177 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
178 |
176 177
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
179 |
178
|
mul01d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) · 0 ) = 0 ) |
180 |
174 179
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = 0 ) |
181 |
180
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = ( 2 · 0 ) ) |
182 |
181 124
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = 0 ) |
183 |
|
sq0i |
⊢ ( 𝐸 = 0 → ( 𝐸 ↑ 2 ) = 0 ) |
184 |
183
|
adantr |
⊢ ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) → ( 𝐸 ↑ 2 ) = 0 ) |
185 |
184
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐸 ↑ 2 ) = 0 ) |
186 |
185
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
187 |
51
|
recnd |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
188 |
187
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = 0 ) |
189 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = 0 ) |
190 |
186 189
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = 0 ) |
191 |
190
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( 0 + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
192 |
54
|
recnd |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
193 |
192
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 0 + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
195 |
191 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
196 |
169 182 195
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
197 |
196
|
ex |
⊢ ( 𝜑 → ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
198 |
149 197
|
syl5bir |
⊢ ( 𝜑 → ( ( ( 𝐵 − 𝑌 ) = 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
199 |
147 27 198
|
syl2and |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
200 |
199
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
201 |
|
ioran |
⊢ ( ¬ ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) ↔ ( ¬ 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) ) |
202 |
10
|
pm2.24d |
⊢ ( 𝜑 → ( ¬ ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
203 |
201 202
|
syl5bir |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
204 |
203
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
205 |
91 143 200 204
|
4casesdan |
⊢ ( 𝜑 → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
206 |
40 55
|
posdifd |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ↔ 0 < ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) ) |
207 |
205 206
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) |
208 |
1 2 3 4 5 6 7 8 11 12
|
2itscplem3 |
⊢ ( 𝜑 → 𝑆 = ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) |
209 |
207 208
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝑆 ) |