| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2itscp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
2itscp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
2itscp.x |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 4 |
|
2itscp.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
|
2itscp.d |
⊢ 𝐷 = ( 𝑋 − 𝐴 ) |
| 6 |
|
2itscp.e |
⊢ 𝐸 = ( 𝐵 − 𝑌 ) |
| 7 |
|
2itscp.c |
⊢ 𝐶 = ( ( 𝐷 · 𝐵 ) + ( 𝐸 · 𝐴 ) ) |
| 8 |
|
2itscp.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 9 |
|
2itscp.l |
⊢ ( 𝜑 → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
| 10 |
|
2itscp.n |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) ) |
| 11 |
|
2itscp.q |
⊢ 𝑄 = ( ( 𝐸 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) |
| 12 |
|
2itscp.s |
⊢ 𝑆 = ( ( ( 𝑅 ↑ 2 ) · 𝑄 ) − ( 𝐶 ↑ 2 ) ) |
| 13 |
2
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → 𝐵 ∈ ℂ ) |
| 15 |
4
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → 𝑌 ∈ ℂ ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → 𝐵 ≠ 𝑌 ) |
| 18 |
14 16 17
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 𝑌 ) → ( 𝐵 − 𝑌 ) ≠ 0 ) |
| 19 |
18
|
ex |
⊢ ( 𝜑 → ( 𝐵 ≠ 𝑌 → ( 𝐵 − 𝑌 ) ≠ 0 ) ) |
| 20 |
3
|
recnd |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝑋 ∈ ℂ ) |
| 22 |
1
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝐴 ≠ 𝑋 ) |
| 25 |
24
|
necomd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → 𝑋 ≠ 𝐴 ) |
| 26 |
21 23 25
|
subne0d |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝑋 ) → ( 𝑋 − 𝐴 ) ≠ 0 ) |
| 27 |
26
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝑋 → ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
| 28 |
6
|
neeq1i |
⊢ ( 𝐸 ≠ 0 ↔ ( 𝐵 − 𝑌 ) ≠ 0 ) |
| 29 |
5
|
neeq1i |
⊢ ( 𝐷 ≠ 0 ↔ ( 𝑋 − 𝐴 ) ≠ 0 ) |
| 30 |
28 29
|
anbi12i |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ↔ ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
| 31 |
|
2re |
⊢ 2 ∈ ℝ |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 33 |
3 1
|
resubcld |
⊢ ( 𝜑 → ( 𝑋 − 𝐴 ) ∈ ℝ ) |
| 34 |
5 33
|
eqeltrid |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 35 |
34 1
|
remulcld |
⊢ ( 𝜑 → ( 𝐷 · 𝐴 ) ∈ ℝ ) |
| 36 |
2 4
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝑌 ) ∈ ℝ ) |
| 37 |
6 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 38 |
37 2
|
remulcld |
⊢ ( 𝜑 → ( 𝐸 · 𝐵 ) ∈ ℝ ) |
| 39 |
35 38
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ∈ ℝ ) |
| 40 |
32 39
|
remulcld |
⊢ ( 𝜑 → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ∈ ℝ ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ∈ ℝ ) |
| 42 |
37
|
resqcld |
⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 43 |
2
|
resqcld |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 44 |
42 43
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 45 |
34
|
resqcld |
⊢ ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ ) |
| 46 |
1
|
resqcld |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 47 |
45 46
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 48 |
44 47
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
| 50 |
8
|
resqcld |
⊢ ( 𝜑 → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
| 51 |
50 46
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 52 |
42 51
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
| 53 |
50 43
|
resubcld |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 54 |
45 53
|
remulcld |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℝ ) |
| 55 |
52 54
|
readdcld |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ∈ ℝ ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ∈ ℝ ) |
| 57 |
35 38
|
resubcld |
⊢ ( 𝜑 → ( ( 𝐷 · 𝐴 ) − ( 𝐸 · 𝐵 ) ) ∈ ℝ ) |
| 58 |
57
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( 𝐷 · 𝐴 ) − ( 𝐸 · 𝐵 ) ) ↑ 2 ) ) |
| 59 |
1 2 3 4 5 6
|
2itscplem1 |
⊢ ( 𝜑 → ( ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) = ( ( ( 𝐷 · 𝐴 ) − ( 𝐸 · 𝐵 ) ) ↑ 2 ) ) |
| 60 |
58 59
|
breqtrrd |
⊢ ( 𝜑 → 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) |
| 61 |
48 40
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ↔ ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ≤ ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) ) |
| 62 |
60 61
|
mpbid |
⊢ ( 𝜑 → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ≤ ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ≤ ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) ) |
| 64 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 65 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 66 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
| 67 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℝ ) |
| 68 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 69 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 70 |
|
simpl |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) → 𝐸 ≠ 0 ) |
| 71 |
|
sqn0rp |
⊢ ( ( 𝐸 ∈ ℝ ∧ 𝐸 ≠ 0 ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
| 72 |
37 70 71
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
| 73 |
46 43 50
|
ltaddsub2d |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 74 |
9 73
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) |
| 76 |
68 69 72 75
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) < ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 77 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 78 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 79 |
|
simpr |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) → 𝐷 ≠ 0 ) |
| 80 |
|
sqn0rp |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
| 81 |
34 79 80
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
| 82 |
46 43 50
|
ltaddsubd |
⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 83 |
9 82
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 85 |
77 78 81 84
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) < ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 86 |
64 65 66 67 76 85
|
lt2addd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) + ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 87 |
41 49 56 63 86
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 88 |
87
|
ex |
⊢ ( 𝜑 → ( ( 𝐸 ≠ 0 ∧ 𝐷 ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 89 |
30 88
|
biimtrrid |
⊢ ( 𝜑 → ( ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 90 |
19 27 89
|
syl2and |
⊢ ( 𝜑 → ( ( 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 91 |
90
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 92 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 𝑋 ↔ 𝐴 = 𝑋 ) |
| 93 |
|
eqcom |
⊢ ( 𝐴 = 𝑋 ↔ 𝑋 = 𝐴 ) |
| 94 |
20 22
|
subeq0ad |
⊢ ( 𝜑 → ( ( 𝑋 − 𝐴 ) = 0 ↔ 𝑋 = 𝐴 ) ) |
| 95 |
94
|
biimprd |
⊢ ( 𝜑 → ( 𝑋 = 𝐴 → ( 𝑋 − 𝐴 ) = 0 ) ) |
| 96 |
93 95
|
biimtrid |
⊢ ( 𝜑 → ( 𝐴 = 𝑋 → ( 𝑋 − 𝐴 ) = 0 ) ) |
| 97 |
92 96
|
biimtrid |
⊢ ( 𝜑 → ( ¬ 𝐴 ≠ 𝑋 → ( 𝑋 − 𝐴 ) = 0 ) ) |
| 98 |
5
|
eqeq1i |
⊢ ( 𝐷 = 0 ↔ ( 𝑋 − 𝐴 ) = 0 ) |
| 99 |
28 98
|
anbi12i |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ↔ ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) = 0 ) ) |
| 100 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 0 ∈ ℝ ) |
| 101 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 102 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℝ ) |
| 103 |
37
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐸 ↑ 2 ) ) |
| 104 |
2
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐵 ↑ 2 ) ) |
| 105 |
42 43 103 104
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 0 ≤ ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) ) |
| 107 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐵 ↑ 2 ) ∈ ℝ ) |
| 108 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 109 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 𝐸 ≠ 0 ) |
| 110 |
37 109 71
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
| 111 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐵 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) |
| 112 |
107 108 110 111
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( 𝐵 ↑ 2 ) ) < ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 113 |
100 101 102 106 112
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → 0 < ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 114 |
|
oveq1 |
⊢ ( 𝐷 = 0 → ( 𝐷 · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 115 |
114
|
adantl |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) → ( 𝐷 · 𝐴 ) = ( 0 · 𝐴 ) ) |
| 116 |
22
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝐴 ) = 0 ) |
| 117 |
115 116
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐷 · 𝐴 ) = 0 ) |
| 118 |
117
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = ( 0 · ( 𝐸 · 𝐵 ) ) ) |
| 119 |
38
|
recnd |
⊢ ( 𝜑 → ( 𝐸 · 𝐵 ) ∈ ℂ ) |
| 120 |
119
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( 𝐸 · 𝐵 ) ) = 0 ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 0 · ( 𝐸 · 𝐵 ) ) = 0 ) |
| 122 |
118 121
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = 0 ) |
| 123 |
122
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = ( 2 · 0 ) ) |
| 124 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
| 125 |
123 124
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = 0 ) |
| 126 |
|
sq0i |
⊢ ( 𝐷 = 0 → ( 𝐷 ↑ 2 ) = 0 ) |
| 127 |
126
|
adantl |
⊢ ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) → ( 𝐷 ↑ 2 ) = 0 ) |
| 128 |
127
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 𝐷 ↑ 2 ) = 0 ) |
| 129 |
128
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 130 |
53
|
recnd |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 131 |
130
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
| 132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
| 133 |
129 132
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) = 0 ) |
| 134 |
133
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + 0 ) ) |
| 135 |
52
|
recnd |
⊢ ( 𝜑 → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 136 |
135
|
addridd |
⊢ ( 𝜑 → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + 0 ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + 0 ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 138 |
134 137
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 139 |
113 125 138
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 140 |
139
|
ex |
⊢ ( 𝜑 → ( ( 𝐸 ≠ 0 ∧ 𝐷 = 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 141 |
99 140
|
biimtrrid |
⊢ ( 𝜑 → ( ( ( 𝐵 − 𝑌 ) ≠ 0 ∧ ( 𝑋 − 𝐴 ) = 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 142 |
19 97 141
|
syl2and |
⊢ ( 𝜑 → ( ( 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 143 |
142
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 144 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 𝑌 ↔ 𝐵 = 𝑌 ) |
| 145 |
13 15
|
subeq0ad |
⊢ ( 𝜑 → ( ( 𝐵 − 𝑌 ) = 0 ↔ 𝐵 = 𝑌 ) ) |
| 146 |
145
|
biimprd |
⊢ ( 𝜑 → ( 𝐵 = 𝑌 → ( 𝐵 − 𝑌 ) = 0 ) ) |
| 147 |
144 146
|
biimtrid |
⊢ ( 𝜑 → ( ¬ 𝐵 ≠ 𝑌 → ( 𝐵 − 𝑌 ) = 0 ) ) |
| 148 |
6
|
eqeq1i |
⊢ ( 𝐸 = 0 ↔ ( 𝐵 − 𝑌 ) = 0 ) |
| 149 |
148 29
|
anbi12i |
⊢ ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ↔ ( ( 𝐵 − 𝑌 ) = 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) ) |
| 150 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 0 ∈ ℝ ) |
| 151 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ∈ ℝ ) |
| 152 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℝ ) |
| 153 |
34
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐷 ↑ 2 ) ) |
| 154 |
1
|
sqge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 ↑ 2 ) ) |
| 155 |
45 46 153 154
|
mulge0d |
⊢ ( 𝜑 → 0 ≤ ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 0 ≤ ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) ) |
| 157 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 158 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 159 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐷 ≠ 0 ) |
| 160 |
34 159 80
|
syl2an2r |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ ) |
| 161 |
43
|
recnd |
⊢ ( 𝜑 → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 162 |
46
|
recnd |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 163 |
161 162
|
addcomd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 164 |
163 9
|
eqbrtrd |
⊢ ( 𝜑 → ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
| 165 |
43 46 50
|
ltaddsub2d |
⊢ ( 𝜑 → ( ( ( 𝐵 ↑ 2 ) + ( 𝐴 ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 166 |
164 165
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 167 |
166
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 ↑ 2 ) < ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) |
| 168 |
157 158 160 167
|
ltmul2dd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 ↑ 2 ) · ( 𝐴 ↑ 2 ) ) < ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 169 |
150 151 152 156 168
|
lelttrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 0 < ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 170 |
|
oveq1 |
⊢ ( 𝐸 = 0 → ( 𝐸 · 𝐵 ) = ( 0 · 𝐵 ) ) |
| 171 |
170
|
adantr |
⊢ ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) → ( 𝐸 · 𝐵 ) = ( 0 · 𝐵 ) ) |
| 172 |
13
|
mul02d |
⊢ ( 𝜑 → ( 0 · 𝐵 ) = 0 ) |
| 173 |
171 172
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐸 · 𝐵 ) = 0 ) |
| 174 |
173
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = ( ( 𝐷 · 𝐴 ) · 0 ) ) |
| 175 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐷 ∈ ℝ ) |
| 176 |
175
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐷 ∈ ℂ ) |
| 177 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 178 |
176 177
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 179 |
178
|
mul01d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) · 0 ) = 0 ) |
| 180 |
174 179
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) = 0 ) |
| 181 |
180
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = ( 2 · 0 ) ) |
| 182 |
181 124
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) = 0 ) |
| 183 |
|
sq0i |
⊢ ( 𝐸 = 0 → ( 𝐸 ↑ 2 ) = 0 ) |
| 184 |
183
|
adantr |
⊢ ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) → ( 𝐸 ↑ 2 ) = 0 ) |
| 185 |
184
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 𝐸 ↑ 2 ) = 0 ) |
| 186 |
185
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) ) |
| 187 |
51
|
recnd |
⊢ ( 𝜑 → ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 188 |
187
|
mul02d |
⊢ ( 𝜑 → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = 0 ) |
| 189 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 0 · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = 0 ) |
| 190 |
186 189
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) = 0 ) |
| 191 |
190
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( 0 + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 192 |
54
|
recnd |
⊢ ( 𝜑 → ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ∈ ℂ ) |
| 193 |
192
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 0 + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 195 |
191 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) = ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) |
| 196 |
169 182 195
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 197 |
196
|
ex |
⊢ ( 𝜑 → ( ( 𝐸 = 0 ∧ 𝐷 ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 198 |
149 197
|
biimtrrid |
⊢ ( 𝜑 → ( ( ( 𝐵 − 𝑌 ) = 0 ∧ ( 𝑋 − 𝐴 ) ≠ 0 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 199 |
147 27 198
|
syl2and |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 200 |
199
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐵 ≠ 𝑌 ∧ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 201 |
|
ioran |
⊢ ( ¬ ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) ↔ ( ¬ 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) ) |
| 202 |
10
|
pm2.24d |
⊢ ( 𝜑 → ( ¬ ( 𝐵 ≠ 𝑌 ∨ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 203 |
201 202
|
biimtrrid |
⊢ ( 𝜑 → ( ( ¬ 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) ) |
| 204 |
203
|
imp |
⊢ ( ( 𝜑 ∧ ( ¬ 𝐵 ≠ 𝑌 ∧ ¬ 𝐴 ≠ 𝑋 ) ) → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 205 |
91 143 200 204
|
4casesdan |
⊢ ( 𝜑 → ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ) |
| 206 |
40 55
|
posdifd |
⊢ ( 𝜑 → ( ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) < ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) ↔ 0 < ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) ) |
| 207 |
205 206
|
mpbid |
⊢ ( 𝜑 → 0 < ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) |
| 208 |
1 2 3 4 5 6 7 8 11 12
|
2itscplem3 |
⊢ ( 𝜑 → 𝑆 = ( ( ( ( 𝐸 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐴 ↑ 2 ) ) ) + ( ( 𝐷 ↑ 2 ) · ( ( 𝑅 ↑ 2 ) − ( 𝐵 ↑ 2 ) ) ) ) − ( 2 · ( ( 𝐷 · 𝐴 ) · ( 𝐸 · 𝐵 ) ) ) ) ) |
| 209 |
207 208
|
breqtrrd |
⊢ ( 𝜑 → 0 < 𝑆 ) |