Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
โข ( ๐ โ ๐ด โ โ ) |
2 |
|
2itscp.b |
โข ( ๐ โ ๐ต โ โ ) |
3 |
|
2itscp.x |
โข ( ๐ โ ๐ โ โ ) |
4 |
|
2itscp.y |
โข ( ๐ โ ๐ โ โ ) |
5 |
|
2itscp.d |
โข ๐ท = ( ๐ โ ๐ด ) |
6 |
|
2itscp.e |
โข ๐ธ = ( ๐ต โ ๐ ) |
7 |
|
2itscp.c |
โข ๐ถ = ( ( ๐ท ยท ๐ต ) + ( ๐ธ ยท ๐ด ) ) |
8 |
|
2itscp.r |
โข ( ๐ โ ๐
โ โ ) |
9 |
|
2itscp.l |
โข ( ๐ โ ( ( ๐ด โ 2 ) + ( ๐ต โ 2 ) ) < ( ๐
โ 2 ) ) |
10 |
|
2itscp.n |
โข ( ๐ โ ( ๐ต โ ๐ โจ ๐ด โ ๐ ) ) |
11 |
|
2itscp.q |
โข ๐ = ( ( ๐ธ โ 2 ) + ( ๐ท โ 2 ) ) |
12 |
|
2itscp.s |
โข ๐ = ( ( ( ๐
โ 2 ) ยท ๐ ) โ ( ๐ถ โ 2 ) ) |
13 |
2
|
recnd |
โข ( ๐ โ ๐ต โ โ ) |
14 |
13
|
adantr |
โข ( ( ๐ โง ๐ต โ ๐ ) โ ๐ต โ โ ) |
15 |
4
|
recnd |
โข ( ๐ โ ๐ โ โ ) |
16 |
15
|
adantr |
โข ( ( ๐ โง ๐ต โ ๐ ) โ ๐ โ โ ) |
17 |
|
simpr |
โข ( ( ๐ โง ๐ต โ ๐ ) โ ๐ต โ ๐ ) |
18 |
14 16 17
|
subne0d |
โข ( ( ๐ โง ๐ต โ ๐ ) โ ( ๐ต โ ๐ ) โ 0 ) |
19 |
18
|
ex |
โข ( ๐ โ ( ๐ต โ ๐ โ ( ๐ต โ ๐ ) โ 0 ) ) |
20 |
3
|
recnd |
โข ( ๐ โ ๐ โ โ ) |
21 |
20
|
adantr |
โข ( ( ๐ โง ๐ด โ ๐ ) โ ๐ โ โ ) |
22 |
1
|
recnd |
โข ( ๐ โ ๐ด โ โ ) |
23 |
22
|
adantr |
โข ( ( ๐ โง ๐ด โ ๐ ) โ ๐ด โ โ ) |
24 |
|
simpr |
โข ( ( ๐ โง ๐ด โ ๐ ) โ ๐ด โ ๐ ) |
25 |
24
|
necomd |
โข ( ( ๐ โง ๐ด โ ๐ ) โ ๐ โ ๐ด ) |
26 |
21 23 25
|
subne0d |
โข ( ( ๐ โง ๐ด โ ๐ ) โ ( ๐ โ ๐ด ) โ 0 ) |
27 |
26
|
ex |
โข ( ๐ โ ( ๐ด โ ๐ โ ( ๐ โ ๐ด ) โ 0 ) ) |
28 |
6
|
neeq1i |
โข ( ๐ธ โ 0 โ ( ๐ต โ ๐ ) โ 0 ) |
29 |
5
|
neeq1i |
โข ( ๐ท โ 0 โ ( ๐ โ ๐ด ) โ 0 ) |
30 |
28 29
|
anbi12i |
โข ( ( ๐ธ โ 0 โง ๐ท โ 0 ) โ ( ( ๐ต โ ๐ ) โ 0 โง ( ๐ โ ๐ด ) โ 0 ) ) |
31 |
|
2re |
โข 2 โ โ |
32 |
31
|
a1i |
โข ( ๐ โ 2 โ โ ) |
33 |
3 1
|
resubcld |
โข ( ๐ โ ( ๐ โ ๐ด ) โ โ ) |
34 |
5 33
|
eqeltrid |
โข ( ๐ โ ๐ท โ โ ) |
35 |
34 1
|
remulcld |
โข ( ๐ โ ( ๐ท ยท ๐ด ) โ โ ) |
36 |
2 4
|
resubcld |
โข ( ๐ โ ( ๐ต โ ๐ ) โ โ ) |
37 |
6 36
|
eqeltrid |
โข ( ๐ โ ๐ธ โ โ ) |
38 |
37 2
|
remulcld |
โข ( ๐ โ ( ๐ธ ยท ๐ต ) โ โ ) |
39 |
35 38
|
remulcld |
โข ( ๐ โ ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) โ โ ) |
40 |
32 39
|
remulcld |
โข ( ๐ โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) โ โ ) |
41 |
40
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) โ โ ) |
42 |
37
|
resqcld |
โข ( ๐ โ ( ๐ธ โ 2 ) โ โ ) |
43 |
2
|
resqcld |
โข ( ๐ โ ( ๐ต โ 2 ) โ โ ) |
44 |
42 43
|
remulcld |
โข ( ๐ โ ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) โ โ ) |
45 |
34
|
resqcld |
โข ( ๐ โ ( ๐ท โ 2 ) โ โ ) |
46 |
1
|
resqcld |
โข ( ๐ โ ( ๐ด โ 2 ) โ โ ) |
47 |
45 46
|
remulcld |
โข ( ๐ โ ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) โ โ ) |
48 |
44 47
|
readdcld |
โข ( ๐ โ ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) โ โ ) |
49 |
48
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) โ โ ) |
50 |
8
|
resqcld |
โข ( ๐ โ ( ๐
โ 2 ) โ โ ) |
51 |
50 46
|
resubcld |
โข ( ๐ โ ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) โ โ ) |
52 |
42 51
|
remulcld |
โข ( ๐ โ ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) โ โ ) |
53 |
50 43
|
resubcld |
โข ( ๐ โ ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) โ โ ) |
54 |
45 53
|
remulcld |
โข ( ๐ โ ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) โ โ ) |
55 |
52 54
|
readdcld |
โข ( ๐ โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) โ โ ) |
56 |
55
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) โ โ ) |
57 |
35 38
|
resubcld |
โข ( ๐ โ ( ( ๐ท ยท ๐ด ) โ ( ๐ธ ยท ๐ต ) ) โ โ ) |
58 |
57
|
sqge0d |
โข ( ๐ โ 0 โค ( ( ( ๐ท ยท ๐ด ) โ ( ๐ธ ยท ๐ต ) ) โ 2 ) ) |
59 |
1 2 3 4 5 6
|
2itscplem1 |
โข ( ๐ โ ( ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) ) = ( ( ( ๐ท ยท ๐ด ) โ ( ๐ธ ยท ๐ต ) ) โ 2 ) ) |
60 |
58 59
|
breqtrrd |
โข ( ๐ โ 0 โค ( ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) ) ) |
61 |
48 40
|
subge0d |
โข ( ๐ โ ( 0 โค ( ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) โค ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) ) ) |
62 |
60 61
|
mpbid |
โข ( ๐ โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) โค ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) ) |
63 |
62
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) โค ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) ) |
64 |
44
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) โ โ ) |
65 |
47
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) โ โ ) |
66 |
52
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) โ โ ) |
67 |
54
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) โ โ ) |
68 |
43
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ๐ต โ 2 ) โ โ ) |
69 |
51
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) โ โ ) |
70 |
|
simpl |
โข ( ( ๐ธ โ 0 โง ๐ท โ 0 ) โ ๐ธ โ 0 ) |
71 |
|
sqn0rp |
โข ( ( ๐ธ โ โ โง ๐ธ โ 0 ) โ ( ๐ธ โ 2 ) โ โ+ ) |
72 |
37 70 71
|
syl2an |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ๐ธ โ 2 ) โ โ+ ) |
73 |
46 43 50
|
ltaddsub2d |
โข ( ๐ โ ( ( ( ๐ด โ 2 ) + ( ๐ต โ 2 ) ) < ( ๐
โ 2 ) โ ( ๐ต โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
74 |
9 73
|
mpbid |
โข ( ๐ โ ( ๐ต โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) |
75 |
74
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ๐ต โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) |
76 |
68 69 72 75
|
ltmul2dd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) < ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
77 |
46
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ๐ด โ 2 ) โ โ ) |
78 |
53
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) โ โ ) |
79 |
|
simpr |
โข ( ( ๐ธ โ 0 โง ๐ท โ 0 ) โ ๐ท โ 0 ) |
80 |
|
sqn0rp |
โข ( ( ๐ท โ โ โง ๐ท โ 0 ) โ ( ๐ท โ 2 ) โ โ+ ) |
81 |
34 79 80
|
syl2an |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ๐ท โ 2 ) โ โ+ ) |
82 |
46 43 50
|
ltaddsubd |
โข ( ๐ โ ( ( ( ๐ด โ 2 ) + ( ๐ต โ 2 ) ) < ( ๐
โ 2 ) โ ( ๐ด โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
83 |
9 82
|
mpbid |
โข ( ๐ โ ( ๐ด โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) |
84 |
83
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ๐ด โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) |
85 |
77 78 81 84
|
ltmul2dd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) < ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
86 |
64 65 66 67 76 85
|
lt2addd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) + ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
87 |
41 49 56 63 86
|
lelttrd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท โ 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
88 |
87
|
ex |
โข ( ๐ โ ( ( ๐ธ โ 0 โง ๐ท โ 0 ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
89 |
30 88
|
biimtrrid |
โข ( ๐ โ ( ( ( ๐ต โ ๐ ) โ 0 โง ( ๐ โ ๐ด ) โ 0 ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
90 |
19 27 89
|
syl2and |
โข ( ๐ โ ( ( ๐ต โ ๐ โง ๐ด โ ๐ ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
91 |
90
|
imp |
โข ( ( ๐ โง ( ๐ต โ ๐ โง ๐ด โ ๐ ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
92 |
|
nne |
โข ( ยฌ ๐ด โ ๐ โ ๐ด = ๐ ) |
93 |
|
eqcom |
โข ( ๐ด = ๐ โ ๐ = ๐ด ) |
94 |
20 22
|
subeq0ad |
โข ( ๐ โ ( ( ๐ โ ๐ด ) = 0 โ ๐ = ๐ด ) ) |
95 |
94
|
biimprd |
โข ( ๐ โ ( ๐ = ๐ด โ ( ๐ โ ๐ด ) = 0 ) ) |
96 |
93 95
|
biimtrid |
โข ( ๐ โ ( ๐ด = ๐ โ ( ๐ โ ๐ด ) = 0 ) ) |
97 |
92 96
|
biimtrid |
โข ( ๐ โ ( ยฌ ๐ด โ ๐ โ ( ๐ โ ๐ด ) = 0 ) ) |
98 |
5
|
eqeq1i |
โข ( ๐ท = 0 โ ( ๐ โ ๐ด ) = 0 ) |
99 |
28 98
|
anbi12i |
โข ( ( ๐ธ โ 0 โง ๐ท = 0 ) โ ( ( ๐ต โ ๐ ) โ 0 โง ( ๐ โ ๐ด ) = 0 ) ) |
100 |
|
0red |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ 0 โ โ ) |
101 |
44
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) โ โ ) |
102 |
52
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) โ โ ) |
103 |
37
|
sqge0d |
โข ( ๐ โ 0 โค ( ๐ธ โ 2 ) ) |
104 |
2
|
sqge0d |
โข ( ๐ โ 0 โค ( ๐ต โ 2 ) ) |
105 |
42 43 103 104
|
mulge0d |
โข ( ๐ โ 0 โค ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) ) |
106 |
105
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ 0 โค ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) ) |
107 |
43
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ๐ต โ 2 ) โ โ ) |
108 |
51
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) โ โ ) |
109 |
|
simprl |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ๐ธ โ 0 ) |
110 |
37 109 71
|
syl2an2r |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ๐ธ โ 2 ) โ โ+ ) |
111 |
74
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ๐ต โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) |
112 |
107 108 110 111
|
ltmul2dd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ๐ต โ 2 ) ) < ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
113 |
100 101 102 106 112
|
lelttrd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ 0 < ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
114 |
|
oveq1 |
โข ( ๐ท = 0 โ ( ๐ท ยท ๐ด ) = ( 0 ยท ๐ด ) ) |
115 |
114
|
adantl |
โข ( ( ๐ธ โ 0 โง ๐ท = 0 ) โ ( ๐ท ยท ๐ด ) = ( 0 ยท ๐ด ) ) |
116 |
22
|
mul02d |
โข ( ๐ โ ( 0 ยท ๐ด ) = 0 ) |
117 |
115 116
|
sylan9eqr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ๐ท ยท ๐ด ) = 0 ) |
118 |
117
|
oveq1d |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) = ( 0 ยท ( ๐ธ ยท ๐ต ) ) ) |
119 |
38
|
recnd |
โข ( ๐ โ ( ๐ธ ยท ๐ต ) โ โ ) |
120 |
119
|
mul02d |
โข ( ๐ โ ( 0 ยท ( ๐ธ ยท ๐ต ) ) = 0 ) |
121 |
120
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( 0 ยท ( ๐ธ ยท ๐ต ) ) = 0 ) |
122 |
118 121
|
eqtrd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) = 0 ) |
123 |
122
|
oveq2d |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) = ( 2 ยท 0 ) ) |
124 |
|
2t0e0 |
โข ( 2 ยท 0 ) = 0 |
125 |
123 124
|
eqtrdi |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) = 0 ) |
126 |
|
sq0i |
โข ( ๐ท = 0 โ ( ๐ท โ 2 ) = 0 ) |
127 |
126
|
adantl |
โข ( ( ๐ธ โ 0 โง ๐ท = 0 ) โ ( ๐ท โ 2 ) = 0 ) |
128 |
127
|
adantl |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ๐ท โ 2 ) = 0 ) |
129 |
128
|
oveq1d |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) = ( 0 ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
130 |
53
|
recnd |
โข ( ๐ โ ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) โ โ ) |
131 |
130
|
mul02d |
โข ( ๐ โ ( 0 ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) = 0 ) |
132 |
131
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( 0 ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) = 0 ) |
133 |
129 132
|
eqtrd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) = 0 ) |
134 |
133
|
oveq2d |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) = ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + 0 ) ) |
135 |
52
|
recnd |
โข ( ๐ โ ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) โ โ ) |
136 |
135
|
addridd |
โข ( ๐ โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + 0 ) = ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
137 |
136
|
adantr |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + 0 ) = ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
138 |
134 137
|
eqtrd |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) = ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
139 |
113 125 138
|
3brtr4d |
โข ( ( ๐ โง ( ๐ธ โ 0 โง ๐ท = 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
140 |
139
|
ex |
โข ( ๐ โ ( ( ๐ธ โ 0 โง ๐ท = 0 ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
141 |
99 140
|
biimtrrid |
โข ( ๐ โ ( ( ( ๐ต โ ๐ ) โ 0 โง ( ๐ โ ๐ด ) = 0 ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
142 |
19 97 141
|
syl2and |
โข ( ๐ โ ( ( ๐ต โ ๐ โง ยฌ ๐ด โ ๐ ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
143 |
142
|
imp |
โข ( ( ๐ โง ( ๐ต โ ๐ โง ยฌ ๐ด โ ๐ ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
144 |
|
nne |
โข ( ยฌ ๐ต โ ๐ โ ๐ต = ๐ ) |
145 |
13 15
|
subeq0ad |
โข ( ๐ โ ( ( ๐ต โ ๐ ) = 0 โ ๐ต = ๐ ) ) |
146 |
145
|
biimprd |
โข ( ๐ โ ( ๐ต = ๐ โ ( ๐ต โ ๐ ) = 0 ) ) |
147 |
144 146
|
biimtrid |
โข ( ๐ โ ( ยฌ ๐ต โ ๐ โ ( ๐ต โ ๐ ) = 0 ) ) |
148 |
6
|
eqeq1i |
โข ( ๐ธ = 0 โ ( ๐ต โ ๐ ) = 0 ) |
149 |
148 29
|
anbi12i |
โข ( ( ๐ธ = 0 โง ๐ท โ 0 ) โ ( ( ๐ต โ ๐ ) = 0 โง ( ๐ โ ๐ด ) โ 0 ) ) |
150 |
|
0red |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ 0 โ โ ) |
151 |
47
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) โ โ ) |
152 |
54
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) โ โ ) |
153 |
34
|
sqge0d |
โข ( ๐ โ 0 โค ( ๐ท โ 2 ) ) |
154 |
1
|
sqge0d |
โข ( ๐ โ 0 โค ( ๐ด โ 2 ) ) |
155 |
45 46 153 154
|
mulge0d |
โข ( ๐ โ 0 โค ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) |
156 |
155
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ 0 โค ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) ) |
157 |
46
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ๐ด โ 2 ) โ โ ) |
158 |
53
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) โ โ ) |
159 |
|
simprr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ๐ท โ 0 ) |
160 |
34 159 80
|
syl2an2r |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ๐ท โ 2 ) โ โ+ ) |
161 |
43
|
recnd |
โข ( ๐ โ ( ๐ต โ 2 ) โ โ ) |
162 |
46
|
recnd |
โข ( ๐ โ ( ๐ด โ 2 ) โ โ ) |
163 |
161 162
|
addcomd |
โข ( ๐ โ ( ( ๐ต โ 2 ) + ( ๐ด โ 2 ) ) = ( ( ๐ด โ 2 ) + ( ๐ต โ 2 ) ) ) |
164 |
163 9
|
eqbrtrd |
โข ( ๐ โ ( ( ๐ต โ 2 ) + ( ๐ด โ 2 ) ) < ( ๐
โ 2 ) ) |
165 |
43 46 50
|
ltaddsub2d |
โข ( ๐ โ ( ( ( ๐ต โ 2 ) + ( ๐ด โ 2 ) ) < ( ๐
โ 2 ) โ ( ๐ด โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
166 |
164 165
|
mpbid |
โข ( ๐ โ ( ๐ด โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) |
167 |
166
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ๐ด โ 2 ) < ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) |
168 |
157 158 160 167
|
ltmul2dd |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท โ 2 ) ยท ( ๐ด โ 2 ) ) < ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
169 |
150 151 152 156 168
|
lelttrd |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ 0 < ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
170 |
|
oveq1 |
โข ( ๐ธ = 0 โ ( ๐ธ ยท ๐ต ) = ( 0 ยท ๐ต ) ) |
171 |
170
|
adantr |
โข ( ( ๐ธ = 0 โง ๐ท โ 0 ) โ ( ๐ธ ยท ๐ต ) = ( 0 ยท ๐ต ) ) |
172 |
13
|
mul02d |
โข ( ๐ โ ( 0 ยท ๐ต ) = 0 ) |
173 |
171 172
|
sylan9eqr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ๐ธ ยท ๐ต ) = 0 ) |
174 |
173
|
oveq2d |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) = ( ( ๐ท ยท ๐ด ) ยท 0 ) ) |
175 |
34
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ๐ท โ โ ) |
176 |
175
|
recnd |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ๐ท โ โ ) |
177 |
22
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ๐ด โ โ ) |
178 |
176 177
|
mulcld |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ๐ท ยท ๐ด ) โ โ ) |
179 |
178
|
mul01d |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท ยท ๐ด ) ยท 0 ) = 0 ) |
180 |
174 179
|
eqtrd |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) = 0 ) |
181 |
180
|
oveq2d |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) = ( 2 ยท 0 ) ) |
182 |
181 124
|
eqtrdi |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) = 0 ) |
183 |
|
sq0i |
โข ( ๐ธ = 0 โ ( ๐ธ โ 2 ) = 0 ) |
184 |
183
|
adantr |
โข ( ( ๐ธ = 0 โง ๐ท โ 0 ) โ ( ๐ธ โ 2 ) = 0 ) |
185 |
184
|
adantl |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ๐ธ โ 2 ) = 0 ) |
186 |
185
|
oveq1d |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) = ( 0 ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) ) |
187 |
51
|
recnd |
โข ( ๐ โ ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) โ โ ) |
188 |
187
|
mul02d |
โข ( ๐ โ ( 0 ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) = 0 ) |
189 |
188
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( 0 ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) = 0 ) |
190 |
186 189
|
eqtrd |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) = 0 ) |
191 |
190
|
oveq1d |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) = ( 0 + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
192 |
54
|
recnd |
โข ( ๐ โ ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) โ โ ) |
193 |
192
|
addlidd |
โข ( ๐ โ ( 0 + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) = ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
194 |
193
|
adantr |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( 0 + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) = ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
195 |
191 194
|
eqtrd |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) = ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) |
196 |
169 182 195
|
3brtr4d |
โข ( ( ๐ โง ( ๐ธ = 0 โง ๐ท โ 0 ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
197 |
196
|
ex |
โข ( ๐ โ ( ( ๐ธ = 0 โง ๐ท โ 0 ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
198 |
149 197
|
biimtrrid |
โข ( ๐ โ ( ( ( ๐ต โ ๐ ) = 0 โง ( ๐ โ ๐ด ) โ 0 ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
199 |
147 27 198
|
syl2and |
โข ( ๐ โ ( ( ยฌ ๐ต โ ๐ โง ๐ด โ ๐ ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
200 |
199
|
imp |
โข ( ( ๐ โง ( ยฌ ๐ต โ ๐ โง ๐ด โ ๐ ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
201 |
|
ioran |
โข ( ยฌ ( ๐ต โ ๐ โจ ๐ด โ ๐ ) โ ( ยฌ ๐ต โ ๐ โง ยฌ ๐ด โ ๐ ) ) |
202 |
10
|
pm2.24d |
โข ( ๐ โ ( ยฌ ( ๐ต โ ๐ โจ ๐ด โ ๐ ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
203 |
201 202
|
biimtrrid |
โข ( ๐ โ ( ( ยฌ ๐ต โ ๐ โง ยฌ ๐ด โ ๐ ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) ) |
204 |
203
|
imp |
โข ( ( ๐ โง ( ยฌ ๐ต โ ๐ โง ยฌ ๐ด โ ๐ ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
205 |
91 143 200 204
|
4casesdan |
โข ( ๐ โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) ) |
206 |
40 55
|
posdifd |
โข ( ๐ โ ( ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) < ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) โ 0 < ( ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) ) ) ) |
207 |
205 206
|
mpbid |
โข ( ๐ โ 0 < ( ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) ) ) |
208 |
1 2 3 4 5 6 7 8 11 12
|
2itscplem3 |
โข ( ๐ โ ๐ = ( ( ( ( ๐ธ โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ด โ 2 ) ) ) + ( ( ๐ท โ 2 ) ยท ( ( ๐
โ 2 ) โ ( ๐ต โ 2 ) ) ) ) โ ( 2 ยท ( ( ๐ท ยท ๐ด ) ยท ( ๐ธ ยท ๐ต ) ) ) ) ) |
209 |
207 208
|
breqtrrd |
โข ( ๐ โ 0 < ๐ ) |