Metamath Proof Explorer


Theorem addsov

Description: The value of surreal addition. Definition from Conway p. 5. (Contributed by Scott Fenton, 20-Aug-2024)

Ref Expression
Assertion addsov ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) )

Proof

Step Hyp Ref Expression
1 df-adds +s = norec2 ( ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) )
2 1 norec2ov ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) = ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) )
3 opex 𝐴 , 𝐵 ⟩ ∈ V
4 addsfn +s Fn ( No × No )
5 fnfun ( +s Fn ( No × No ) → Fun +s )
6 4 5 ax-mp Fun +s
7 fvex ( L ‘ 𝐴 ) ∈ V
8 fvex ( R ‘ 𝐴 ) ∈ V
9 7 8 unex ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∈ V
10 snex { 𝐴 } ∈ V
11 9 10 unex ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) ∈ V
12 fvex ( L ‘ 𝐵 ) ∈ V
13 fvex ( R ‘ 𝐵 ) ∈ V
14 12 13 unex ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∈ V
15 snex { 𝐵 } ∈ V
16 14 15 unex ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ∈ V
17 11 16 xpex ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∈ V
18 17 difexi ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ∈ V
19 resfunexg ( ( Fun +s ∧ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ∈ V ) → ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∈ V )
20 6 18 19 mp2an ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∈ V
21 2fveq3 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( L ‘ ( 1st𝑥 ) ) = ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
22 fveq2 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 2nd𝑥 ) = ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
23 22 oveq2d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑙 𝑎 ( 2nd𝑥 ) ) = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
24 23 eqeq2d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) ↔ 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
25 21 24 rexeqbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
26 25 abbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } )
27 2fveq3 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( L ‘ ( 2nd𝑥 ) ) = ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
28 fveq2 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 1st𝑥 ) = ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) )
29 28 oveq1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 1st𝑥 ) 𝑎 𝑙 ) = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) )
30 29 eqeq2d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) ↔ 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) ) )
31 27 30 rexeqbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) ) )
32 31 abbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) } )
33 26 32 uneq12d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) } ) )
34 2fveq3 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( R ‘ ( 1st𝑥 ) ) = ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
35 22 oveq2d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑟 𝑎 ( 2nd𝑥 ) ) = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
36 35 eqeq2d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) ↔ 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
37 34 36 rexeqbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
38 37 abbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } )
39 2fveq3 ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( R ‘ ( 2nd𝑥 ) ) = ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
40 28 oveq1d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( 1st𝑥 ) 𝑎 𝑟 ) = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) )
41 40 eqeq2d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) ↔ 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) ) )
42 39 41 rexeqbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) ) )
43 42 abbidv ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) } )
44 38 43 uneq12d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) = ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) } ) )
45 33 44 oveq12d ( 𝑥 = ⟨ 𝐴 , 𝐵 ⟩ → ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) } ) ) )
46 oveq ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
47 46 eqeq2d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
48 47 rexbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
49 48 abbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } )
50 oveq ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) )
51 50 eqeq2d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) ↔ 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ) )
52 51 rexbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ) )
53 52 abbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } )
54 49 53 uneq12d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) )
55 oveq ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) )
56 55 eqeq2d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
57 56 rexbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
58 57 abbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } )
59 oveq ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) )
60 59 eqeq2d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) ↔ 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ) )
61 60 rexbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ) )
62 61 abbidv ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } )
63 58 62 uneq12d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) } ) = ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) )
64 54 63 oveq12d ( 𝑎 = ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) → ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) 𝑎 𝑟 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) ) )
65 eqid ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) = ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) )
66 ovex ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) ) ∈ V
67 45 64 65 66 ovmpo ( ( ⟨ 𝐴 , 𝐵 ⟩ ∈ V ∧ ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ∈ V ) → ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) ) )
68 3 20 67 mp2an ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) )
69 op1stg ( ( 𝐴 No 𝐵 No ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
70 69 fveq2d ( ( 𝐴 No 𝐵 No ) → ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( L ‘ 𝐴 ) )
71 70 eleq2d ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑙 ∈ ( L ‘ 𝐴 ) ) )
72 op2ndg ( ( 𝐴 No 𝐵 No ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
73 72 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
74 73 oveq2d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) )
75 elun1 ( 𝑙 ∈ ( L ‘ 𝐴 ) → 𝑙 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
76 elun1 ( 𝑙 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
77 75 76 syl ( 𝑙 ∈ ( L ‘ 𝐴 ) → 𝑙 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
78 77 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
79 snidg ( 𝐵 No 𝐵 ∈ { 𝐵 } )
80 elun2 ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
81 79 80 syl ( 𝐵 No 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
82 81 adantl ( ( 𝐴 No 𝐵 No ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
83 82 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
84 78 83 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ⟨ 𝑙 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
85 leftirr ( 𝐴 No → ¬ 𝐴 ∈ ( L ‘ 𝐴 ) )
86 85 adantr ( ( 𝐴 No 𝐵 No ) → ¬ 𝐴 ∈ ( L ‘ 𝐴 ) )
87 eleq1 ( 𝑙 = 𝐴 → ( 𝑙 ∈ ( L ‘ 𝐴 ) ↔ 𝐴 ∈ ( L ‘ 𝐴 ) ) )
88 87 notbid ( 𝑙 = 𝐴 → ( ¬ 𝑙 ∈ ( L ‘ 𝐴 ) ↔ ¬ 𝐴 ∈ ( L ‘ 𝐴 ) ) )
89 86 88 syl5ibrcom ( ( 𝐴 No 𝐵 No ) → ( 𝑙 = 𝐴 → ¬ 𝑙 ∈ ( L ‘ 𝐴 ) ) )
90 89 necon2ad ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ 𝐴 ) → 𝑙𝐴 ) )
91 90 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝑙𝐴 )
92 91 orcd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙𝐴𝐵𝐵 ) )
93 simpr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝑙 ∈ ( L ‘ 𝐴 ) )
94 simplr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → 𝐵 No )
95 opthneg ( ( 𝑙 ∈ ( L ‘ 𝐴 ) ∧ 𝐵 No ) → ( ⟨ 𝑙 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑙𝐴𝐵𝐵 ) ) )
96 93 94 95 syl2anc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( ⟨ 𝑙 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑙𝐴𝐵𝐵 ) ) )
97 92 96 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ⟨ 𝑙 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
98 eldifsn ( ⟨ 𝑙 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↔ ( ⟨ 𝑙 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ ⟨ 𝑙 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ) )
99 84 97 98 sylanbrc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ⟨ 𝑙 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
100 99 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑙 , 𝐵 ⟩ ) = ( +s ‘ ⟨ 𝑙 , 𝐵 ⟩ ) )
101 df-ov ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑙 , 𝐵 ⟩ )
102 df-ov ( 𝑙 +s 𝐵 ) = ( +s ‘ ⟨ 𝑙 , 𝐵 ⟩ )
103 100 101 102 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( 𝑙 +s 𝐵 ) )
104 74 103 eqtrd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑙 +s 𝐵 ) )
105 104 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐴 ) ) → ( 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) )
106 105 ex ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ 𝐴 ) → ( 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) ) )
107 71 106 sylbid ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) ) )
108 107 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) → ( 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑙 +s 𝐵 ) ) )
109 70 108 rexeqbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) ) )
110 109 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } = { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } )
111 72 fveq2d ( ( 𝐴 No 𝐵 No ) → ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( L ‘ 𝐵 ) )
112 111 eleq2d ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑙 ∈ ( L ‘ 𝐵 ) ) )
113 69 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
114 113 oveq1d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) = ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) )
115 snidg ( 𝐴 No 𝐴 ∈ { 𝐴 } )
116 115 adantr ( ( 𝐴 No 𝐵 No ) → 𝐴 ∈ { 𝐴 } )
117 elun2 ( 𝐴 ∈ { 𝐴 } → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
118 116 117 syl ( ( 𝐴 No 𝐵 No ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
119 118 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
120 elun1 ( 𝑙 ∈ ( L ‘ 𝐵 ) → 𝑙 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
121 elun1 ( 𝑙 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
122 120 121 syl ( 𝑙 ∈ ( L ‘ 𝐵 ) → 𝑙 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
123 122 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 𝑙 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
124 119 123 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ⟨ 𝐴 , 𝑙 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
125 leftirr ( 𝐵 No → ¬ 𝐵 ∈ ( L ‘ 𝐵 ) )
126 125 adantl ( ( 𝐴 No 𝐵 No ) → ¬ 𝐵 ∈ ( L ‘ 𝐵 ) )
127 eleq1 ( 𝑙 = 𝐵 → ( 𝑙 ∈ ( L ‘ 𝐵 ) ↔ 𝐵 ∈ ( L ‘ 𝐵 ) ) )
128 127 notbid ( 𝑙 = 𝐵 → ( ¬ 𝑙 ∈ ( L ‘ 𝐵 ) ↔ ¬ 𝐵 ∈ ( L ‘ 𝐵 ) ) )
129 126 128 syl5ibrcom ( ( 𝐴 No 𝐵 No ) → ( 𝑙 = 𝐵 → ¬ 𝑙 ∈ ( L ‘ 𝐵 ) ) )
130 129 necon2ad ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ 𝐵 ) → 𝑙𝐵 ) )
131 130 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → 𝑙𝐵 )
132 131 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 𝐴𝐴𝑙𝐵 ) )
133 opthneg ( ( 𝐴 No 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ⟨ 𝐴 , 𝑙 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑙𝐵 ) ) )
134 133 adantlr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ⟨ 𝐴 , 𝑙 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑙𝐵 ) ) )
135 132 134 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ⟨ 𝐴 , 𝑙 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
136 eldifsn ( ⟨ 𝐴 , 𝑙 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↔ ( ⟨ 𝐴 , 𝑙 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ ⟨ 𝐴 , 𝑙 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ) )
137 124 135 136 sylanbrc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ⟨ 𝐴 , 𝑙 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
138 137 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑙 ⟩ ) = ( +s ‘ ⟨ 𝐴 , 𝑙 ⟩ ) )
139 df-ov ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑙 ⟩ )
140 df-ov ( 𝐴 +s 𝑙 ) = ( +s ‘ ⟨ 𝐴 , 𝑙 ⟩ )
141 138 139 140 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) = ( 𝐴 +s 𝑙 ) )
142 114 141 eqtrd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) = ( 𝐴 +s 𝑙 ) )
143 142 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ 𝐵 ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ↔ 𝑧 = ( 𝐴 +s 𝑙 ) ) )
144 143 ex ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ 𝐵 ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ↔ 𝑧 = ( 𝐴 +s 𝑙 ) ) ) )
145 112 144 sylbid ( ( 𝐴 No 𝐵 No ) → ( 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ↔ 𝑧 = ( 𝐴 +s 𝑙 ) ) ) )
146 145 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ↔ 𝑧 = ( 𝐴 +s 𝑙 ) ) )
147 111 146 rexeqbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) ↔ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) ) )
148 147 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } = { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } )
149 110 148 uneq12d ( ( 𝐴 No 𝐵 No ) → ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) = ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) )
150 69 fveq2d ( ( 𝐴 No 𝐵 No ) → ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( R ‘ 𝐴 ) )
151 150 eleq2d ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑟 ∈ ( R ‘ 𝐴 ) ) )
152 72 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐵 )
153 152 oveq2d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) )
154 elun2 ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) )
155 elun1 ( 𝑟 ∈ ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
156 154 155 syl ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
157 156 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
158 82 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝐵 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
159 157 158 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ⟨ 𝑟 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
160 rightirr ( 𝐴 No → ¬ 𝐴 ∈ ( R ‘ 𝐴 ) )
161 160 adantr ( ( 𝐴 No 𝐵 No ) → ¬ 𝐴 ∈ ( R ‘ 𝐴 ) )
162 eleq1 ( 𝑟 = 𝐴 → ( 𝑟 ∈ ( R ‘ 𝐴 ) ↔ 𝐴 ∈ ( R ‘ 𝐴 ) ) )
163 162 notbid ( 𝑟 = 𝐴 → ( ¬ 𝑟 ∈ ( R ‘ 𝐴 ) ↔ ¬ 𝐴 ∈ ( R ‘ 𝐴 ) ) )
164 161 163 syl5ibrcom ( ( 𝐴 No 𝐵 No ) → ( 𝑟 = 𝐴 → ¬ 𝑟 ∈ ( R ‘ 𝐴 ) ) )
165 164 necon2ad ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ 𝐴 ) → 𝑟𝐴 ) )
166 165 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝑟𝐴 )
167 166 orcd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟𝐴𝐵𝐵 ) )
168 simpr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝑟 ∈ ( R ‘ 𝐴 ) )
169 simplr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → 𝐵 No )
170 opthneg ( ( 𝑟 ∈ ( R ‘ 𝐴 ) ∧ 𝐵 No ) → ( ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑟𝐴𝐵𝐵 ) ) )
171 168 169 170 syl2anc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝑟𝐴𝐵𝐵 ) ) )
172 167 171 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
173 eldifsn ( ⟨ 𝑟 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↔ ( ⟨ 𝑟 , 𝐵 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ ⟨ 𝑟 , 𝐵 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ) )
174 159 172 173 sylanbrc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ⟨ 𝑟 , 𝐵 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
175 174 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑟 , 𝐵 ⟩ ) = ( +s ‘ ⟨ 𝑟 , 𝐵 ⟩ ) )
176 df-ov ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝑟 , 𝐵 ⟩ )
177 df-ov ( 𝑟 +s 𝐵 ) = ( +s ‘ ⟨ 𝑟 , 𝐵 ⟩ )
178 175 176 177 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝐵 ) = ( 𝑟 +s 𝐵 ) )
179 153 178 eqtrd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( 𝑟 +s 𝐵 ) )
180 179 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐴 ) ) → ( 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑟 +s 𝐵 ) ) )
181 180 ex ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ 𝐴 ) → ( 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑟 +s 𝐵 ) ) ) )
182 151 181 sylbid ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑟 +s 𝐵 ) ) ) )
183 182 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) → ( 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑦 = ( 𝑟 +s 𝐵 ) ) )
184 150 183 rexeqbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) ) )
185 184 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } = { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } )
186 72 fveq2d ( ( 𝐴 No 𝐵 No ) → ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) = ( R ‘ 𝐵 ) )
187 186 eleq2d ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ 𝑟 ∈ ( R ‘ 𝐵 ) ) )
188 69 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) = 𝐴 )
189 188 oveq1d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) = ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) )
190 116 adantr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝐴 ∈ { 𝐴 } )
191 190 117 syl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝐴 ∈ ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) )
192 elun2 ( 𝑟 ∈ ( R ‘ 𝐵 ) → 𝑟 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
193 192 adantl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝑟 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) )
194 elun1 ( 𝑟 ∈ ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
195 193 194 syl ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝑟 ∈ ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) )
196 191 195 opelxpd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ⟨ 𝐴 , 𝑟 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) )
197 rightirr ( 𝐵 No → ¬ 𝐵 ∈ ( R ‘ 𝐵 ) )
198 197 adantl ( ( 𝐴 No 𝐵 No ) → ¬ 𝐵 ∈ ( R ‘ 𝐵 ) )
199 eleq1 ( 𝑟 = 𝐵 → ( 𝑟 ∈ ( R ‘ 𝐵 ) ↔ 𝐵 ∈ ( R ‘ 𝐵 ) ) )
200 199 notbid ( 𝑟 = 𝐵 → ( ¬ 𝑟 ∈ ( R ‘ 𝐵 ) ↔ ¬ 𝐵 ∈ ( R ‘ 𝐵 ) ) )
201 198 200 syl5ibrcom ( ( 𝐴 No 𝐵 No ) → ( 𝑟 = 𝐵 → ¬ 𝑟 ∈ ( R ‘ 𝐵 ) ) )
202 201 necon2ad ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ 𝐵 ) → 𝑟𝐵 ) )
203 202 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → 𝑟𝐵 )
204 203 olcd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 𝐴𝐴𝑟𝐵 ) )
205 opthneg ( ( 𝐴 No 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ⟨ 𝐴 , 𝑟 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑟𝐵 ) ) )
206 205 adantlr ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ⟨ 𝐴 , 𝑟 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ↔ ( 𝐴𝐴𝑟𝐵 ) ) )
207 204 206 mpbird ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ⟨ 𝐴 , 𝑟 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ )
208 eldifsn ( ⟨ 𝐴 , 𝑟 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ↔ ( ⟨ 𝐴 , 𝑟 ⟩ ∈ ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∧ ⟨ 𝐴 , 𝑟 ⟩ ≠ ⟨ 𝐴 , 𝐵 ⟩ ) )
209 196 207 208 sylanbrc ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ⟨ 𝐴 , 𝑟 ⟩ ∈ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
210 209 fvresd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑟 ⟩ ) = ( +s ‘ ⟨ 𝐴 , 𝑟 ⟩ ) )
211 df-ov ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) = ( ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ‘ ⟨ 𝐴 , 𝑟 ⟩ )
212 df-ov ( 𝐴 +s 𝑟 ) = ( +s ‘ ⟨ 𝐴 , 𝑟 ⟩ )
213 210 211 212 3eqtr4g ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 𝐴 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) = ( 𝐴 +s 𝑟 ) )
214 189 213 eqtrd ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) = ( 𝐴 +s 𝑟 ) )
215 214 eqeq2d ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ 𝐵 ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ↔ 𝑧 = ( 𝐴 +s 𝑟 ) ) )
216 215 ex ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ 𝐵 ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ↔ 𝑧 = ( 𝐴 +s 𝑟 ) ) ) )
217 187 216 sylbid ( ( 𝐴 No 𝐵 No ) → ( 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ↔ 𝑧 = ( 𝐴 +s 𝑟 ) ) ) )
218 217 imp ( ( ( 𝐴 No 𝐵 No ) ∧ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) ) → ( 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ↔ 𝑧 = ( 𝐴 +s 𝑟 ) ) )
219 186 218 rexeqbidva ( ( 𝐴 No 𝐵 No ) → ( ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) ↔ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) ) )
220 219 abbidv ( ( 𝐴 No 𝐵 No ) → { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } = { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } )
221 185 220 uneq12d ( ( 𝐴 No 𝐵 No ) → ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) = ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) )
222 149 221 oveq12d ( ( 𝐴 No 𝐵 No ) → ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑙 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑦 = ( 𝑟 ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ) 𝑧 = ( ( 1st ‘ ⟨ 𝐴 , 𝐵 ⟩ ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) 𝑟 ) } ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) )
223 68 222 syl5eq ( ( 𝐴 No 𝐵 No ) → ( ⟨ 𝐴 , 𝐵 ⟩ ( 𝑥 ∈ V , 𝑎 ∈ V ↦ ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑙 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ ( 1st𝑥 ) ) 𝑦 = ( 𝑟 𝑎 ( 2nd𝑥 ) ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ ( 2nd𝑥 ) ) 𝑧 = ( ( 1st𝑥 ) 𝑎 𝑟 ) } ) ) ) ( +s ↾ ( ( ( ( ( L ‘ 𝐴 ) ∪ ( R ‘ 𝐴 ) ) ∪ { 𝐴 } ) × ( ( ( L ‘ 𝐵 ) ∪ ( R ‘ 𝐵 ) ) ∪ { 𝐵 } ) ) ∖ { ⟨ 𝐴 , 𝐵 ⟩ } ) ) ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) )
224 2 223 eqtrd ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) = ( ( { 𝑦 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐴 ) 𝑦 = ( 𝑙 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑙 ∈ ( L ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑙 ) } ) |s ( { 𝑦 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐴 ) 𝑦 = ( 𝑟 +s 𝐵 ) } ∪ { 𝑧 ∣ ∃ 𝑟 ∈ ( R ‘ 𝐵 ) 𝑧 = ( 𝐴 +s 𝑟 ) } ) ) )