| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 2 |
|
bpolyval |
⊢ ( ( 2 ∈ ℕ0 ∧ 𝑋 ∈ ℂ ) → ( 2 BernPoly 𝑋 ) = ( ( 𝑋 ↑ 2 ) − Σ 𝑘 ∈ ( 0 ... ( 2 − 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ) ) |
| 3 |
1 2
|
mpan |
⊢ ( 𝑋 ∈ ℂ → ( 2 BernPoly 𝑋 ) = ( ( 𝑋 ↑ 2 ) − Σ 𝑘 ∈ ( 0 ... ( 2 − 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ) ) |
| 4 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 5 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 6 |
4 5
|
eqtr4i |
⊢ ( 2 − 1 ) = ( 0 + 1 ) |
| 7 |
6
|
oveq2i |
⊢ ( 0 ... ( 2 − 1 ) ) = ( 0 ... ( 0 + 1 ) ) |
| 8 |
7
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 0 ... ( 2 − 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) |
| 9 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 10 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 11 |
9 10
|
eleqtri |
⊢ 0 ∈ ( ℤ≥ ‘ 0 ) |
| 12 |
11
|
a1i |
⊢ ( 𝑋 ∈ ℂ → 0 ∈ ( ℤ≥ ‘ 0 ) ) |
| 13 |
|
0z |
⊢ 0 ∈ ℤ |
| 14 |
|
fzpr |
⊢ ( 0 ∈ ℤ → ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
| 15 |
13 14
|
ax-mp |
⊢ ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
| 16 |
15
|
eleq2i |
⊢ ( 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ↔ 𝑘 ∈ { 0 , ( 0 + 1 ) } ) |
| 17 |
|
vex |
⊢ 𝑘 ∈ V |
| 18 |
17
|
elpr |
⊢ ( 𝑘 ∈ { 0 , ( 0 + 1 ) } ↔ ( 𝑘 = 0 ∨ 𝑘 = ( 0 + 1 ) ) ) |
| 19 |
16 18
|
bitri |
⊢ ( 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ↔ ( 𝑘 = 0 ∨ 𝑘 = ( 0 + 1 ) ) ) |
| 20 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 2 C 𝑘 ) = ( 2 C 0 ) ) |
| 21 |
|
bcn0 |
⊢ ( 2 ∈ ℕ0 → ( 2 C 0 ) = 1 ) |
| 22 |
1 21
|
ax-mp |
⊢ ( 2 C 0 ) = 1 |
| 23 |
20 22
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 2 C 𝑘 ) = 1 ) |
| 24 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 BernPoly 𝑋 ) = ( 0 BernPoly 𝑋 ) ) |
| 25 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 2 − 𝑘 ) = ( 2 − 0 ) ) |
| 26 |
25
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ( 2 − 𝑘 ) + 1 ) = ( ( 2 − 0 ) + 1 ) ) |
| 27 |
|
2cn |
⊢ 2 ∈ ℂ |
| 28 |
27
|
subid1i |
⊢ ( 2 − 0 ) = 2 |
| 29 |
28
|
oveq1i |
⊢ ( ( 2 − 0 ) + 1 ) = ( 2 + 1 ) |
| 30 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 31 |
29 30
|
eqtr4i |
⊢ ( ( 2 − 0 ) + 1 ) = 3 |
| 32 |
26 31
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( ( 2 − 𝑘 ) + 1 ) = 3 ) |
| 33 |
24 32
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) = ( ( 0 BernPoly 𝑋 ) / 3 ) ) |
| 34 |
23 33
|
oveq12d |
⊢ ( 𝑘 = 0 → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) ) |
| 35 |
|
bpoly0 |
⊢ ( 𝑋 ∈ ℂ → ( 0 BernPoly 𝑋 ) = 1 ) |
| 36 |
35
|
oveq1d |
⊢ ( 𝑋 ∈ ℂ → ( ( 0 BernPoly 𝑋 ) / 3 ) = ( 1 / 3 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑋 ∈ ℂ → ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) = ( 1 · ( 1 / 3 ) ) ) |
| 38 |
|
3cn |
⊢ 3 ∈ ℂ |
| 39 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 40 |
38 39
|
reccli |
⊢ ( 1 / 3 ) ∈ ℂ |
| 41 |
40
|
mullidi |
⊢ ( 1 · ( 1 / 3 ) ) = ( 1 / 3 ) |
| 42 |
37 41
|
eqtrdi |
⊢ ( 𝑋 ∈ ℂ → ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) = ( 1 / 3 ) ) |
| 43 |
34 42
|
sylan9eqr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 = 0 ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 1 / 3 ) ) |
| 44 |
43 40
|
eqeltrdi |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 = 0 ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 45 |
5
|
eqeq2i |
⊢ ( 𝑘 = ( 0 + 1 ) ↔ 𝑘 = 1 ) |
| 46 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 C 𝑘 ) = ( 2 C 1 ) ) |
| 47 |
|
bcn1 |
⊢ ( 2 ∈ ℕ0 → ( 2 C 1 ) = 2 ) |
| 48 |
1 47
|
ax-mp |
⊢ ( 2 C 1 ) = 2 |
| 49 |
46 48
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 2 C 𝑘 ) = 2 ) |
| 50 |
|
oveq1 |
⊢ ( 𝑘 = 1 → ( 𝑘 BernPoly 𝑋 ) = ( 1 BernPoly 𝑋 ) ) |
| 51 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 − 𝑘 ) = ( 2 − 1 ) ) |
| 52 |
51
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 − 𝑘 ) + 1 ) = ( ( 2 − 1 ) + 1 ) ) |
| 53 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 54 |
|
npcan |
⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 2 − 1 ) + 1 ) = 2 ) |
| 55 |
27 53 54
|
mp2an |
⊢ ( ( 2 − 1 ) + 1 ) = 2 |
| 56 |
52 55
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( 2 − 𝑘 ) + 1 ) = 2 ) |
| 57 |
50 56
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) = ( ( 1 BernPoly 𝑋 ) / 2 ) ) |
| 58 |
49 57
|
oveq12d |
⊢ ( 𝑘 = 1 → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 2 · ( ( 1 BernPoly 𝑋 ) / 2 ) ) ) |
| 59 |
45 58
|
sylbi |
⊢ ( 𝑘 = ( 0 + 1 ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 2 · ( ( 1 BernPoly 𝑋 ) / 2 ) ) ) |
| 60 |
|
bpoly1 |
⊢ ( 𝑋 ∈ ℂ → ( 1 BernPoly 𝑋 ) = ( 𝑋 − ( 1 / 2 ) ) ) |
| 61 |
60
|
oveq1d |
⊢ ( 𝑋 ∈ ℂ → ( ( 1 BernPoly 𝑋 ) / 2 ) = ( ( 𝑋 − ( 1 / 2 ) ) / 2 ) ) |
| 62 |
61
|
oveq2d |
⊢ ( 𝑋 ∈ ℂ → ( 2 · ( ( 1 BernPoly 𝑋 ) / 2 ) ) = ( 2 · ( ( 𝑋 − ( 1 / 2 ) ) / 2 ) ) ) |
| 63 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 64 |
|
subcl |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( 𝑋 − ( 1 / 2 ) ) ∈ ℂ ) |
| 65 |
63 64
|
mpan2 |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − ( 1 / 2 ) ) ∈ ℂ ) |
| 66 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 67 |
|
divcan2 |
⊢ ( ( ( 𝑋 − ( 1 / 2 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( ( 𝑋 − ( 1 / 2 ) ) / 2 ) ) = ( 𝑋 − ( 1 / 2 ) ) ) |
| 68 |
27 66 67
|
mp3an23 |
⊢ ( ( 𝑋 − ( 1 / 2 ) ) ∈ ℂ → ( 2 · ( ( 𝑋 − ( 1 / 2 ) ) / 2 ) ) = ( 𝑋 − ( 1 / 2 ) ) ) |
| 69 |
65 68
|
syl |
⊢ ( 𝑋 ∈ ℂ → ( 2 · ( ( 𝑋 − ( 1 / 2 ) ) / 2 ) ) = ( 𝑋 − ( 1 / 2 ) ) ) |
| 70 |
62 69
|
eqtrd |
⊢ ( 𝑋 ∈ ℂ → ( 2 · ( ( 1 BernPoly 𝑋 ) / 2 ) ) = ( 𝑋 − ( 1 / 2 ) ) ) |
| 71 |
59 70
|
sylan9eqr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 = ( 0 + 1 ) ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 𝑋 − ( 1 / 2 ) ) ) |
| 72 |
65
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 = ( 0 + 1 ) ) → ( 𝑋 − ( 1 / 2 ) ) ∈ ℂ ) |
| 73 |
71 72
|
eqeltrd |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 = ( 0 + 1 ) ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 74 |
44 73
|
jaodan |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 𝑘 = 0 ∨ 𝑘 = ( 0 + 1 ) ) ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 75 |
19 74
|
sylan2b |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ) → ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ∈ ℂ ) |
| 76 |
12 75 59
|
fsump1 |
⊢ ( 𝑋 ∈ ℂ → Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) + ( 2 · ( ( 1 BernPoly 𝑋 ) / 2 ) ) ) ) |
| 77 |
42 40
|
eqeltrdi |
⊢ ( 𝑋 ∈ ℂ → ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) ∈ ℂ ) |
| 78 |
34
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) ) |
| 79 |
13 77 78
|
sylancr |
⊢ ( 𝑋 ∈ ℂ → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 1 · ( ( 0 BernPoly 𝑋 ) / 3 ) ) ) |
| 80 |
79 42
|
eqtrd |
⊢ ( 𝑋 ∈ ℂ → Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 1 / 3 ) ) |
| 81 |
80 70
|
oveq12d |
⊢ ( 𝑋 ∈ ℂ → ( Σ 𝑘 ∈ ( 0 ... 0 ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) + ( 2 · ( ( 1 BernPoly 𝑋 ) / 2 ) ) ) = ( ( 1 / 3 ) + ( 𝑋 − ( 1 / 2 ) ) ) ) |
| 82 |
76 81
|
eqtrd |
⊢ ( 𝑋 ∈ ℂ → Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( ( 1 / 3 ) + ( 𝑋 − ( 1 / 2 ) ) ) ) |
| 83 |
|
addsub12 |
⊢ ( ( ( 1 / 3 ) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( ( 1 / 3 ) + ( 𝑋 − ( 1 / 2 ) ) ) = ( 𝑋 + ( ( 1 / 3 ) − ( 1 / 2 ) ) ) ) |
| 84 |
40 63 83
|
mp3an13 |
⊢ ( 𝑋 ∈ ℂ → ( ( 1 / 3 ) + ( 𝑋 − ( 1 / 2 ) ) ) = ( 𝑋 + ( ( 1 / 3 ) − ( 1 / 2 ) ) ) ) |
| 85 |
63 40
|
negsubdi2i |
⊢ - ( ( 1 / 2 ) − ( 1 / 3 ) ) = ( ( 1 / 3 ) − ( 1 / 2 ) ) |
| 86 |
|
halfthird |
⊢ ( ( 1 / 2 ) − ( 1 / 3 ) ) = ( 1 / 6 ) |
| 87 |
86
|
negeqi |
⊢ - ( ( 1 / 2 ) − ( 1 / 3 ) ) = - ( 1 / 6 ) |
| 88 |
85 87
|
eqtr3i |
⊢ ( ( 1 / 3 ) − ( 1 / 2 ) ) = - ( 1 / 6 ) |
| 89 |
88
|
oveq2i |
⊢ ( 𝑋 + ( ( 1 / 3 ) − ( 1 / 2 ) ) ) = ( 𝑋 + - ( 1 / 6 ) ) |
| 90 |
84 89
|
eqtrdi |
⊢ ( 𝑋 ∈ ℂ → ( ( 1 / 3 ) + ( 𝑋 − ( 1 / 2 ) ) ) = ( 𝑋 + - ( 1 / 6 ) ) ) |
| 91 |
|
6cn |
⊢ 6 ∈ ℂ |
| 92 |
|
6re |
⊢ 6 ∈ ℝ |
| 93 |
|
6pos |
⊢ 0 < 6 |
| 94 |
92 93
|
gt0ne0ii |
⊢ 6 ≠ 0 |
| 95 |
91 94
|
reccli |
⊢ ( 1 / 6 ) ∈ ℂ |
| 96 |
|
negsub |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( 1 / 6 ) ∈ ℂ ) → ( 𝑋 + - ( 1 / 6 ) ) = ( 𝑋 − ( 1 / 6 ) ) ) |
| 97 |
95 96
|
mpan2 |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + - ( 1 / 6 ) ) = ( 𝑋 − ( 1 / 6 ) ) ) |
| 98 |
82 90 97
|
3eqtrd |
⊢ ( 𝑋 ∈ ℂ → Σ 𝑘 ∈ ( 0 ... ( 0 + 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 𝑋 − ( 1 / 6 ) ) ) |
| 99 |
8 98
|
eqtrid |
⊢ ( 𝑋 ∈ ℂ → Σ 𝑘 ∈ ( 0 ... ( 2 − 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) = ( 𝑋 − ( 1 / 6 ) ) ) |
| 100 |
99
|
oveq2d |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 ↑ 2 ) − Σ 𝑘 ∈ ( 0 ... ( 2 − 1 ) ) ( ( 2 C 𝑘 ) · ( ( 𝑘 BernPoly 𝑋 ) / ( ( 2 − 𝑘 ) + 1 ) ) ) ) = ( ( 𝑋 ↑ 2 ) − ( 𝑋 − ( 1 / 6 ) ) ) ) |
| 101 |
|
sqcl |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
| 102 |
|
subsub |
⊢ ( ( ( 𝑋 ↑ 2 ) ∈ ℂ ∧ 𝑋 ∈ ℂ ∧ ( 1 / 6 ) ∈ ℂ ) → ( ( 𝑋 ↑ 2 ) − ( 𝑋 − ( 1 / 6 ) ) ) = ( ( ( 𝑋 ↑ 2 ) − 𝑋 ) + ( 1 / 6 ) ) ) |
| 103 |
95 102
|
mp3an3 |
⊢ ( ( ( 𝑋 ↑ 2 ) ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( ( 𝑋 ↑ 2 ) − ( 𝑋 − ( 1 / 6 ) ) ) = ( ( ( 𝑋 ↑ 2 ) − 𝑋 ) + ( 1 / 6 ) ) ) |
| 104 |
101 103
|
mpancom |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 ↑ 2 ) − ( 𝑋 − ( 1 / 6 ) ) ) = ( ( ( 𝑋 ↑ 2 ) − 𝑋 ) + ( 1 / 6 ) ) ) |
| 105 |
3 100 104
|
3eqtrd |
⊢ ( 𝑋 ∈ ℂ → ( 2 BernPoly 𝑋 ) = ( ( ( 𝑋 ↑ 2 ) − 𝑋 ) + ( 1 / 6 ) ) ) |