| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayleyhamilton.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | cayleyhamilton.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | cayleyhamilton.0 | ⊢  0   =  ( 0g ‘ 𝐴 ) | 
						
							| 4 |  | cayleyhamilton.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 5 |  | cayleyhamilton.k | ⊢ 𝐾  =  ( coe1 ‘ ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 6 |  | cayleyhamilton.m | ⊢  ∗   =  (  ·𝑠  ‘ 𝐴 ) | 
						
							| 7 |  | cayleyhamilton.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝐴 ) ) | 
						
							| 8 |  | cayleyhamilton1.l | ⊢ 𝐿  =  ( Base ‘ 𝑅 ) | 
						
							| 9 |  | cayleyhamilton1.x | ⊢ 𝑋  =  ( var1 ‘ 𝑅 ) | 
						
							| 10 |  | cayleyhamilton1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 11 |  | cayleyhamilton1.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑃 ) | 
						
							| 12 |  | cayleyhamilton1.e | ⊢ 𝐸  =  ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | 
						
							| 13 |  | cayleyhamilton1.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 14 | 1 2 3 4 5 6 7 | cayleyhamilton | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) | 
						
							| 16 |  | nfv | ⊢ Ⅎ 𝑛 ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑛 𝑃 | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑛  Σg | 
						
							| 19 |  | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) | 
						
							| 20 | 17 18 19 | nfov | ⊢ Ⅎ 𝑛 ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) | 
						
							| 21 | 20 | nfeq2 | ⊢ Ⅎ 𝑛 ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) | 
						
							| 22 | 16 21 | nfan | ⊢ Ⅎ 𝑛 ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) ) | 
						
							| 23 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑅  ∈  Ring ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  𝑅  ∈  Ring ) | 
						
							| 26 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 27 | 4 1 2 10 26 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 29 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 30 |  | elmapi | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  𝐹 : ℕ0 ⟶ 𝐿 ) | 
						
							| 31 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ 𝐿  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝐿 ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( 𝐹 : ℕ0 ⟶ 𝐿  →  ∀ 𝑛  ∈  ℕ0 ( 𝐹 ‘ 𝑛 )  ∈  𝐿 ) | 
						
							| 33 | 30 32 | syl | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  ∀ 𝑛  ∈  ℕ0 ( 𝐹 ‘ 𝑛 )  ∈  𝐿 ) | 
						
							| 34 | 33 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ∀ 𝑛  ∈  ℕ0 ( 𝐹 ‘ 𝑛 )  ∈  𝐿 ) | 
						
							| 35 | 30 | feqmptd | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  𝐹  =  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 36 | 13 | a1i | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  𝑍  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 37 | 35 36 | breq12d | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑛 ) )  finSupp  ( 0g ‘ 𝑅 ) ) ) | 
						
							| 38 | 37 | biimpa | ⊢ ( ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑛 ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑛 ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 40 | 10 26 9 12 25 8 11 29 34 39 | gsumsmonply1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) )  ∈  ( Base ‘ 𝑃 ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑖  =  𝑛  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑖  =  𝑛  →  ( 𝑖 𝐸 𝑋 )  =  ( 𝑛 𝐸 𝑋 ) ) | 
						
							| 43 | 41 42 | oveq12d | ⊢ ( 𝑖  =  𝑛  →  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) )  =  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) | 
						
							| 44 | 43 | cbvmptv | ⊢ ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) | 
						
							| 45 | 44 | oveq2i | ⊢ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) | 
						
							| 46 | 45 | fveq2i | ⊢ ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) )  =  ( coe1 ‘ ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) ) | 
						
							| 47 | 10 26 5 46 | ply1coe1eq | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐶 ‘ 𝑀 )  ∈  ( Base ‘ 𝑃 )  ∧  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) )  ∈  ( Base ‘ 𝑃 ) )  →  ( ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 )  ↔  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) ) ) | 
						
							| 48 | 25 28 40 47 | syl3anc | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 )  ↔  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) ) ) | 
						
							| 49 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐾 ‘ 𝑚 )  =  ( 𝐾 ‘ 𝑛 ) ) | 
						
							| 50 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 51 | 49 50 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 )  ↔  ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) ) | 
						
							| 52 | 51 | rspcva | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 53 |  | simpl | ⊢ ( ( ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 ) ) | 
						
							| 54 | 24 | ad2antrl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) )  →  𝑅  ∈  Ring ) | 
						
							| 55 |  | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ 𝐿  ∧  𝑖  ∈  ℕ0 )  →  ( 𝐹 ‘ 𝑖 )  ∈  𝐿 ) | 
						
							| 56 | 55 | ralrimiva | ⊢ ( 𝐹 : ℕ0 ⟶ 𝐿  →  ∀ 𝑖  ∈  ℕ0 ( 𝐹 ‘ 𝑖 )  ∈  𝐿 ) | 
						
							| 57 | 30 56 | syl | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  ∀ 𝑖  ∈  ℕ0 ( 𝐹 ‘ 𝑖 )  ∈  𝐿 ) | 
						
							| 58 | 57 | ad2antrl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝐹 ‘ 𝑖 )  ∈  𝐿 ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) )  →  ∀ 𝑖  ∈  ℕ0 ( 𝐹 ‘ 𝑖 )  ∈  𝐿 ) | 
						
							| 60 | 30 | feqmptd | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  𝐹  =  ( 𝑖  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 61 | 60 | breq1d | ⊢ ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝑖  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑖 ) )  finSupp  𝑍 ) ) | 
						
							| 62 | 61 | biimpa | ⊢ ( ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 )  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑖 ) )  finSupp  𝑍 ) | 
						
							| 63 | 62 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑖 ) )  finSupp  𝑍 ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) )  →  ( 𝑖  ∈  ℕ0  ↦  ( 𝐹 ‘ 𝑖 ) )  finSupp  𝑍 ) | 
						
							| 65 |  | simpl | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 66 | 10 26 9 12 54 8 11 13 59 64 65 | gsummoncoe1 | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ⦋ 𝑛  /  𝑖 ⦌ ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 67 |  | csbfv | ⊢ ⦋ 𝑛  /  𝑖 ⦌ ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑛 ) | 
						
							| 68 | 66 67 | eqtrdi | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 69 | 68 | adantl | ⊢ ( ( ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) ) )  →  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 70 | 53 69 | eqtrd | ⊢ ( ( ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  ∧  ( 𝑛  ∈  ℕ0  ∧  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) ) ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 71 | 70 | exp32 | ⊢ ( ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  →  ( 𝑛  ∈  ℕ0  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 72 | 71 | com12 | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) )  →  ( ( 𝐾 ‘ 𝑛 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑛 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 74 | 52 73 | mpd | ⊢ ( ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 75 | 74 | com12 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( ( 𝑛  ∈  ℕ0  ∧  ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 ) )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 76 | 75 | expcomd | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( ∀ 𝑚  ∈  ℕ0 ( 𝐾 ‘ 𝑚 )  =  ( ( coe1 ‘ ( 𝑃  Σg  ( 𝑖  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑖 )  ·  ( 𝑖 𝐸 𝑋 ) ) ) ) ) ‘ 𝑚 )  →  ( 𝑛  ∈  ℕ0  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 77 | 48 76 | sylbird | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) )  →  ( 𝑛  ∈  ℕ0  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 78 | 77 | imp31 | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐾 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 79 | 78 | oveq1d | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) )  =  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) | 
						
							| 80 | 22 79 | mpteq2da | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) )  →  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) )  =  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) ) | 
						
							| 81 | 80 | oveq2d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) ) ) | 
						
							| 82 | 81 | eqeq1d | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) )  →  ( ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0   ↔  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) ) | 
						
							| 83 | 82 | biimpd | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  ∧  ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) ) )  →  ( ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0   →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) ) | 
						
							| 84 | 83 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) )  →  ( ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐾 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0   →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) ) ) | 
						
							| 85 | 15 84 | mpid | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝐹  ∈  ( 𝐿  ↑m  ℕ0 )  ∧  𝐹  finSupp  𝑍 ) )  →  ( ( 𝐶 ‘ 𝑀 )  =  ( 𝑃  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ·  ( 𝑛 𝐸 𝑋 ) ) ) )  →  ( 𝐴  Σg  ( 𝑛  ∈  ℕ0  ↦  ( ( 𝐹 ‘ 𝑛 )  ∗  ( 𝑛  ↑  𝑀 ) ) ) )  =   0  ) ) |