Step |
Hyp |
Ref |
Expression |
1 |
|
dgrub.1 |
⊢ 𝐴 = ( coeff ‘ 𝐹 ) |
2 |
|
dgrub.2 |
⊢ 𝑁 = ( deg ‘ 𝐹 ) |
3 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
4 |
2 3
|
eqeltrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 ∈ ℕ0 ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑁 ∈ ℕ0 ) |
6 |
5
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑁 ∈ ℝ ) |
7 |
|
simp2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑀 ∈ ℕ0 ) |
8 |
7
|
nn0red |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑀 ∈ ℝ ) |
9 |
1
|
dgrlem |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 ≤ 𝑛 ) ) |
10 |
9
|
simpld |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
12 |
|
ffn |
⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) → 𝐴 Fn ℕ0 ) |
13 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑦 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
14 |
11 12 13
|
3syl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ( 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ↔ ( 𝑦 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) ) ) |
15 |
14
|
biimpa |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → ( 𝑦 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) ) ) |
16 |
15
|
simpld |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → 𝑦 ∈ ℕ0 ) |
17 |
16
|
nn0red |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → 𝑦 ∈ ℝ ) |
18 |
8
|
adantr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → 𝑀 ∈ ℝ ) |
19 |
|
eldifsni |
⊢ ( ( 𝐴 ‘ 𝑦 ) ∈ ( ℂ ∖ { 0 } ) → ( 𝐴 ‘ 𝑦 ) ≠ 0 ) |
20 |
15 19
|
simpl2im |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → ( 𝐴 ‘ 𝑦 ) ≠ 0 ) |
21 |
|
simp3 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
22 |
1
|
coef3 |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐴 : ℕ0 ⟶ ℂ ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝐴 : ℕ0 ⟶ ℂ ) |
24 |
|
plyco0 |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ↔ ∀ 𝑦 ∈ ℕ0 ( ( 𝐴 ‘ 𝑦 ) ≠ 0 → 𝑦 ≤ 𝑀 ) ) ) |
25 |
7 23 24
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ↔ ∀ 𝑦 ∈ ℕ0 ( ( 𝐴 ‘ 𝑦 ) ≠ 0 → 𝑦 ≤ 𝑀 ) ) ) |
26 |
21 25
|
mpbid |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ∀ 𝑦 ∈ ℕ0 ( ( 𝐴 ‘ 𝑦 ) ≠ 0 → 𝑦 ≤ 𝑀 ) ) |
27 |
26
|
r19.21bi |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐴 ‘ 𝑦 ) ≠ 0 → 𝑦 ≤ 𝑀 ) ) |
28 |
16 27
|
syldan |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → ( ( 𝐴 ‘ 𝑦 ) ≠ 0 → 𝑦 ≤ 𝑀 ) ) |
29 |
20 28
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → 𝑦 ≤ 𝑀 ) |
30 |
17 18 29
|
lensymd |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) ∧ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ) → ¬ 𝑀 < 𝑦 ) |
31 |
30
|
ralrimiva |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ∀ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑀 < 𝑦 ) |
32 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
33 |
|
ltso |
⊢ < Or ℝ |
34 |
|
soss |
⊢ ( ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0 ) ) |
35 |
32 33 34
|
mp2 |
⊢ < Or ℕ0 |
36 |
35
|
a1i |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → < Or ℕ0 ) |
37 |
|
0zd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0 ∈ ℤ ) |
38 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ⊆ dom 𝐴 |
39 |
38 10
|
fssdm |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ⊆ ℕ0 ) |
40 |
9
|
simprd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℤ ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 ≤ 𝑛 ) |
41 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
42 |
41
|
uzsupss |
⊢ ( ( 0 ∈ ℤ ∧ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ⊆ ℕ0 ∧ ∃ 𝑛 ∈ ℤ ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 ≤ 𝑛 ) → ∃ 𝑛 ∈ ℕ0 ( ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑛 < 𝑥 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑥 < 𝑛 → ∃ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 < 𝑦 ) ) ) |
43 |
37 39 40 42
|
syl3anc |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ( ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑛 < 𝑥 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑥 < 𝑛 → ∃ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 < 𝑦 ) ) ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ∃ 𝑛 ∈ ℕ0 ( ∀ 𝑥 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑛 < 𝑥 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑥 < 𝑛 → ∃ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) 𝑥 < 𝑦 ) ) ) |
45 |
36 44
|
supnub |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ( ( 𝑀 ∈ ℕ0 ∧ ∀ 𝑦 ∈ ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) ¬ 𝑀 < 𝑦 ) → ¬ 𝑀 < sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) ) |
46 |
7 31 45
|
mp2and |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ¬ 𝑀 < sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
47 |
1
|
dgrval |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
48 |
2 47
|
eqtrid |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑁 = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
49 |
48
|
3ad2ant1 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑁 = sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) |
50 |
49
|
breq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ( 𝑀 < 𝑁 ↔ 𝑀 < sup ( ( ◡ 𝐴 “ ( ℂ ∖ { 0 } ) ) , ℕ0 , < ) ) ) |
51 |
46 50
|
mtbird |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → ¬ 𝑀 < 𝑁 ) |
52 |
6 8 51
|
nltled |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ 𝑀 ∈ ℕ0 ∧ ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) → 𝑁 ≤ 𝑀 ) |