| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrgspnsubrun.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
elrgspnsubrun.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
elrgspnsubrun.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
elrgspnsubrun.n |
⊢ 𝑁 = ( RingSpan ‘ 𝑅 ) |
| 5 |
|
elrgspnsubrun.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
elrgspnsubrun.e |
⊢ ( 𝜑 → 𝐸 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
elrgspnsubrun.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝑅 ∈ CRing ) |
| 9 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝐸 ∈ ( SubRing ‘ 𝑅 ) ) |
| 10 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 11 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 12 |
1
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
| 13 |
1
|
subrgss |
⊢ ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ⊆ 𝐵 ) |
| 14 |
6 13
|
syl |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
| 15 |
1
|
subrgss |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝑅 ) → 𝐹 ⊆ 𝐵 ) |
| 16 |
7 15
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
| 17 |
14 16
|
unssd |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) ⊆ 𝐵 ) |
| 18 |
4
|
a1i |
⊢ ( 𝜑 → 𝑁 = ( RingSpan ‘ 𝑅 ) ) |
| 19 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) = ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) |
| 20 |
11 12 17 18 19
|
rgspncl |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ∈ ( SubRing ‘ 𝑅 ) ) |
| 21 |
1
|
subrgss |
⊢ ( ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ∈ ( SubRing ‘ 𝑅 ) → ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ⊆ 𝐵 ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ⊆ 𝐵 ) |
| 23 |
22
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝑋 ∈ 𝐵 ) |
| 25 |
6 7
|
unexd |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 26 |
|
wrdexg |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∈ V → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 28 |
27
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 29 |
|
zex |
⊢ ℤ ∈ V |
| 30 |
29
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → ℤ ∈ V ) |
| 31 |
|
elrabi |
⊢ ( 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } → 𝑔 ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) |
| 32 |
31
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝑔 ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) |
| 33 |
28 30 32
|
elmaprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝑔 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 34 |
|
breq1 |
⊢ ( ℎ = 𝑔 → ( ℎ finSupp 0 ↔ 𝑔 finSupp 0 ) ) |
| 35 |
34
|
elrab |
⊢ ( 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ↔ ( 𝑔 ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∧ 𝑔 finSupp 0 ) ) |
| 36 |
35
|
simprbi |
⊢ ( 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } → 𝑔 finSupp 0 ) |
| 37 |
36
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝑔 finSupp 0 ) |
| 38 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑔 ‘ 𝑣 ) = ( 𝑔 ‘ 𝑤 ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑣 = 𝑤 → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) |
| 40 |
38 39
|
oveq12d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝑔 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 41 |
40
|
cbvmptv |
⊢ ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) = ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 42 |
41
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) |
| 43 |
42
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) → ( 𝑅 Σg ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) → ( 𝑋 = ( 𝑅 Σg ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) ) ↔ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → 𝑋 = ( 𝑅 Σg ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) ) ) |
| 46 |
1 2 3 4 8 9 10 24 33 37 45
|
elrgspnsubrunlem2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) → ∃ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) |
| 47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 48 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 49 |
|
breq1 |
⊢ ( ℎ = 𝑖 → ( ℎ finSupp 0 ↔ 𝑖 finSupp 0 ) ) |
| 50 |
49
|
cbvrabv |
⊢ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } = { 𝑖 ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ 𝑖 finSupp 0 } |
| 51 |
1 47 48 4 50 11 17
|
elrgspn |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ↔ ∃ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) |
| 52 |
51
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) → ∃ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 53 |
46 52
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) → ∃ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) |
| 54 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝑅 ∈ CRing ) |
| 55 |
6
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝐸 ∈ ( SubRing ‘ 𝑅 ) ) |
| 56 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 57 |
6 7
|
elmapd |
⊢ ( 𝜑 → ( 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ↔ 𝑝 : 𝐹 ⟶ 𝐸 ) ) |
| 58 |
57
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) → 𝑝 : 𝐹 ⟶ 𝐸 ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝑝 : 𝐹 ⟶ 𝐸 ) |
| 60 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝑝 finSupp 0 ) |
| 61 |
|
fveq2 |
⊢ ( 𝑓 = ℎ → ( 𝑝 ‘ 𝑓 ) = ( 𝑝 ‘ ℎ ) ) |
| 62 |
|
id |
⊢ ( 𝑓 = ℎ → 𝑓 = ℎ ) |
| 63 |
61 62
|
oveq12d |
⊢ ( 𝑓 = ℎ → ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) = ( ( 𝑝 ‘ ℎ ) · ℎ ) ) |
| 64 |
63
|
cbvmptv |
⊢ ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) = ( ℎ ∈ 𝐹 ↦ ( ( 𝑝 ‘ ℎ ) · ℎ ) ) |
| 65 |
64
|
oveq2i |
⊢ ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) = ( 𝑅 Σg ( ℎ ∈ 𝐹 ↦ ( ( 𝑝 ‘ ℎ ) · ℎ ) ) ) |
| 66 |
65
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) → ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) = ( 𝑅 Σg ( ℎ ∈ 𝐹 ↦ ( ( 𝑝 ‘ ℎ ) · ℎ ) ) ) ) |
| 67 |
66
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) → ( 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ↔ 𝑋 = ( 𝑅 Σg ( ℎ ∈ 𝐹 ↦ ( ( 𝑝 ‘ ℎ ) · ℎ ) ) ) ) ) |
| 68 |
67
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝑋 = ( 𝑅 Σg ( ℎ ∈ 𝐹 ↦ ( ( 𝑝 ‘ ℎ ) · ℎ ) ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝑝 ‘ 𝑓 ) = ( 𝑝 ‘ 𝑔 ) ) |
| 70 |
|
id |
⊢ ( 𝑓 = 𝑔 → 𝑓 = 𝑔 ) |
| 71 |
69 70
|
s2eqd |
⊢ ( 𝑓 = 𝑔 → 〈“ ( 𝑝 ‘ 𝑓 ) 𝑓 ”〉 = 〈“ ( 𝑝 ‘ 𝑔 ) 𝑔 ”〉 ) |
| 72 |
71
|
cbvmptv |
⊢ ( 𝑓 ∈ ( 𝑝 supp 0 ) ↦ 〈“ ( 𝑝 ‘ 𝑓 ) 𝑓 ”〉 ) = ( 𝑔 ∈ ( 𝑝 supp 0 ) ↦ 〈“ ( 𝑝 ‘ 𝑔 ) 𝑔 ”〉 ) |
| 73 |
72
|
rneqi |
⊢ ran ( 𝑓 ∈ ( 𝑝 supp 0 ) ↦ 〈“ ( 𝑝 ‘ 𝑓 ) 𝑓 ”〉 ) = ran ( 𝑔 ∈ ( 𝑝 supp 0 ) ↦ 〈“ ( 𝑝 ‘ 𝑔 ) 𝑔 ”〉 ) |
| 74 |
1 2 3 4 54 55 56 59 60 68 73
|
elrgspnsubrunlem1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ 𝑝 finSupp 0 ) ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) |
| 75 |
74
|
anasss |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ) ∧ ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) |
| 76 |
75
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) → 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) |
| 77 |
53 76
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ↔ ∃ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) ) |