| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrgspnsubrun.b |
|
| 2 |
|
elrgspnsubrun.t |
|
| 3 |
|
elrgspnsubrun.z |
|
| 4 |
|
elrgspnsubrun.n |
|
| 5 |
|
elrgspnsubrun.r |
|
| 6 |
|
elrgspnsubrun.e |
|
| 7 |
|
elrgspnsubrun.f |
|
| 8 |
5
|
ad3antrrr |
|
| 9 |
6
|
ad3antrrr |
|
| 10 |
7
|
ad3antrrr |
|
| 11 |
5
|
crngringd |
|
| 12 |
1
|
a1i |
|
| 13 |
1
|
subrgss |
|
| 14 |
6 13
|
syl |
|
| 15 |
1
|
subrgss |
|
| 16 |
7 15
|
syl |
|
| 17 |
14 16
|
unssd |
|
| 18 |
4
|
a1i |
|
| 19 |
|
eqidd |
|
| 20 |
11 12 17 18 19
|
rgspncl |
|
| 21 |
1
|
subrgss |
|
| 22 |
20 21
|
syl |
|
| 23 |
22
|
sselda |
|
| 24 |
23
|
ad2antrr |
|
| 25 |
6 7
|
unexd |
|
| 26 |
|
wrdexg |
|
| 27 |
25 26
|
syl |
|
| 28 |
27
|
ad3antrrr |
|
| 29 |
|
zex |
|
| 30 |
29
|
a1i |
|
| 31 |
|
elrabi |
|
| 32 |
31
|
ad2antlr |
|
| 33 |
28 30 32
|
elmaprd |
|
| 34 |
|
breq1 |
|
| 35 |
34
|
elrab |
|
| 36 |
35
|
simprbi |
|
| 37 |
36
|
ad2antlr |
|
| 38 |
|
fveq2 |
|
| 39 |
|
oveq2 |
|
| 40 |
38 39
|
oveq12d |
|
| 41 |
40
|
cbvmptv |
|
| 42 |
41
|
oveq2i |
|
| 43 |
42
|
a1i |
|
| 44 |
43
|
eqeq2d |
|
| 45 |
44
|
biimpar |
|
| 46 |
1 2 3 4 8 9 10 24 33 37 45
|
elrgspnsubrunlem2 |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
breq1 |
|
| 50 |
49
|
cbvrabv |
|
| 51 |
1 47 48 4 50 11 17
|
elrgspn |
|
| 52 |
51
|
biimpa |
|
| 53 |
46 52
|
r19.29a |
|
| 54 |
5
|
ad3antrrr |
|
| 55 |
6
|
ad3antrrr |
|
| 56 |
7
|
ad3antrrr |
|
| 57 |
6 7
|
elmapd |
|
| 58 |
57
|
biimpa |
|
| 59 |
58
|
ad2antrr |
|
| 60 |
|
simplr |
|
| 61 |
|
fveq2 |
|
| 62 |
|
id |
|
| 63 |
61 62
|
oveq12d |
|
| 64 |
63
|
cbvmptv |
|
| 65 |
64
|
oveq2i |
|
| 66 |
65
|
a1i |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
67
|
biimpa |
|
| 69 |
|
fveq2 |
|
| 70 |
|
id |
|
| 71 |
69 70
|
s2eqd |
|
| 72 |
71
|
cbvmptv |
|
| 73 |
72
|
rneqi |
|
| 74 |
1 2 3 4 54 55 56 59 60 68 73
|
elrgspnsubrunlem1 |
|
| 75 |
74
|
anasss |
|
| 76 |
75
|
r19.29an |
|
| 77 |
53 76
|
impbida |
|