Metamath Proof Explorer


Theorem elrgspnsubrun

Description: Membership in the ring span of the union of two subrings of a commutative ring. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elrgspnsubrun.b B = Base R
elrgspnsubrun.t · ˙ = R
elrgspnsubrun.z 0 ˙ = 0 R
elrgspnsubrun.n N = RingSpan R
elrgspnsubrun.r φ R CRing
elrgspnsubrun.e φ E SubRing R
elrgspnsubrun.f φ F SubRing R
Assertion elrgspnsubrun φ X N E F p E F finSupp 0 ˙ p X = R f F p f · ˙ f

Proof

Step Hyp Ref Expression
1 elrgspnsubrun.b B = Base R
2 elrgspnsubrun.t · ˙ = R
3 elrgspnsubrun.z 0 ˙ = 0 R
4 elrgspnsubrun.n N = RingSpan R
5 elrgspnsubrun.r φ R CRing
6 elrgspnsubrun.e φ E SubRing R
7 elrgspnsubrun.f φ F SubRing R
8 5 ad3antrrr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w R CRing
9 6 ad3antrrr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w E SubRing R
10 7 ad3antrrr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w F SubRing R
11 5 crngringd φ R Ring
12 1 a1i φ B = Base R
13 1 subrgss E SubRing R E B
14 6 13 syl φ E B
15 1 subrgss F SubRing R F B
16 7 15 syl φ F B
17 14 16 unssd φ E F B
18 4 a1i φ N = RingSpan R
19 eqidd φ N E F = N E F
20 11 12 17 18 19 rgspncl φ N E F SubRing R
21 1 subrgss N E F SubRing R N E F B
22 20 21 syl φ N E F B
23 22 sselda φ X N E F X B
24 23 ad2antrr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w X B
25 6 7 unexd φ E F V
26 wrdexg E F V Word E F V
27 25 26 syl φ Word E F V
28 27 ad3antrrr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w Word E F V
29 zex V
30 29 a1i φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w V
31 elrabi g h Word E F | finSupp 0 h g Word E F
32 31 ad2antlr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w g Word E F
33 28 30 32 elmaprd φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w g : Word E F
34 breq1 h = g finSupp 0 h finSupp 0 g
35 34 elrab g h Word E F | finSupp 0 h g Word E F finSupp 0 g
36 35 simprbi g h Word E F | finSupp 0 h finSupp 0 g
37 36 ad2antlr φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w finSupp 0 g
38 fveq2 v = w g v = g w
39 oveq2 v = w mulGrp R v = mulGrp R w
40 38 39 oveq12d v = w g v R mulGrp R v = g w R mulGrp R w
41 40 cbvmptv v Word E F g v R mulGrp R v = w Word E F g w R mulGrp R w
42 41 oveq2i R v Word E F g v R mulGrp R v = R w Word E F g w R mulGrp R w
43 42 a1i φ X N E F g h Word E F | finSupp 0 h R v Word E F g v R mulGrp R v = R w Word E F g w R mulGrp R w
44 43 eqeq2d φ X N E F g h Word E F | finSupp 0 h X = R v Word E F g v R mulGrp R v X = R w Word E F g w R mulGrp R w
45 44 biimpar φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w X = R v Word E F g v R mulGrp R v
46 1 2 3 4 8 9 10 24 33 37 45 elrgspnsubrunlem2 φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w p E F finSupp 0 ˙ p X = R f F p f · ˙ f
47 eqid mulGrp R = mulGrp R
48 eqid R = R
49 breq1 h = i finSupp 0 h finSupp 0 i
50 49 cbvrabv h Word E F | finSupp 0 h = i Word E F | finSupp 0 i
51 1 47 48 4 50 11 17 elrgspn φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w
52 51 biimpa φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w
53 46 52 r19.29a φ X N E F p E F finSupp 0 ˙ p X = R f F p f · ˙ f
54 5 ad3antrrr φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f R CRing
55 6 ad3antrrr φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f E SubRing R
56 7 ad3antrrr φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f F SubRing R
57 6 7 elmapd φ p E F p : F E
58 57 biimpa φ p E F p : F E
59 58 ad2antrr φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f p : F E
60 simplr φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f finSupp 0 ˙ p
61 fveq2 f = h p f = p h
62 id f = h f = h
63 61 62 oveq12d f = h p f · ˙ f = p h · ˙ h
64 63 cbvmptv f F p f · ˙ f = h F p h · ˙ h
65 64 oveq2i R f F p f · ˙ f = R h F p h · ˙ h
66 65 a1i φ p E F finSupp 0 ˙ p R f F p f · ˙ f = R h F p h · ˙ h
67 66 eqeq2d φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f X = R h F p h · ˙ h
68 67 biimpa φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f X = R h F p h · ˙ h
69 fveq2 f = g p f = p g
70 id f = g f = g
71 69 70 s2eqd f = g ⟨“ p f f ”⟩ = ⟨“ p g g ”⟩
72 71 cbvmptv f supp 0 ˙ p ⟨“ p f f ”⟩ = g supp 0 ˙ p ⟨“ p g g ”⟩
73 72 rneqi ran f supp 0 ˙ p ⟨“ p f f ”⟩ = ran g supp 0 ˙ p ⟨“ p g g ”⟩
74 1 2 3 4 54 55 56 59 60 68 73 elrgspnsubrunlem1 φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f X N E F
75 74 anasss φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f X N E F
76 75 r19.29an φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f X N E F
77 53 76 impbida φ X N E F p E F finSupp 0 ˙ p X = R f F p f · ˙ f