Metamath Proof Explorer


Theorem elrgspn

Description: Membership in the subring generated by the subset A . An element X lies in that subring if and only if X is a linear combination with integer coefficients of products of elements of A . (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses elrgspn.b B = Base R
elrgspn.m M = mulGrp R
elrgspn.x · ˙ = R
elrgspn.n N = RingSpan R
elrgspn.f F = f Word A | finSupp 0 f
elrgspn.r φ R Ring
elrgspn.a φ A B
elrgspn.1 φ X B
Assertion elrgspn φ X N A g F X = R w Word A g w · ˙ M w

Proof

Step Hyp Ref Expression
1 elrgspn.b B = Base R
2 elrgspn.m M = mulGrp R
3 elrgspn.x · ˙ = R
4 elrgspn.n N = RingSpan R
5 elrgspn.f F = f Word A | finSupp 0 f
6 elrgspn.r φ R Ring
7 elrgspn.a φ A B
8 elrgspn.1 φ X B
9 fveq1 h = i h w = i w
10 9 oveq1d h = i h w · ˙ M w = i w · ˙ M w
11 10 mpteq2dv h = i w Word A h w · ˙ M w = w Word A i w · ˙ M w
12 fveq2 w = v i w = i v
13 oveq2 w = v M w = M v
14 12 13 oveq12d w = v i w · ˙ M w = i v · ˙ M v
15 14 cbvmptv w Word A i w · ˙ M w = v Word A i v · ˙ M v
16 11 15 eqtrdi h = i w Word A h w · ˙ M w = v Word A i v · ˙ M v
17 16 oveq2d h = i R w Word A h w · ˙ M w = R v Word A i v · ˙ M v
18 17 cbvmptv h F R w Word A h w · ˙ M w = i F R v Word A i v · ˙ M v
19 18 rneqi ran h F R w Word A h w · ˙ M w = ran i F R v Word A i v · ˙ M v
20 1 2 3 4 5 6 7 19 elrgspnlem4 φ N A = ran h F R w Word A h w · ˙ M w
21 20 eleq2d φ X N A X ran h F R w Word A h w · ˙ M w
22 fveq1 h = g h w = g w
23 22 oveq1d h = g h w · ˙ M w = g w · ˙ M w
24 23 mpteq2dv h = g w Word A h w · ˙ M w = w Word A g w · ˙ M w
25 24 oveq2d h = g R w Word A h w · ˙ M w = R w Word A g w · ˙ M w
26 25 cbvmptv h F R w Word A h w · ˙ M w = g F R w Word A g w · ˙ M w
27 26 elrnmpt X B X ran h F R w Word A h w · ˙ M w g F X = R w Word A g w · ˙ M w
28 8 27 syl φ X ran h F R w Word A h w · ˙ M w g F X = R w Word A g w · ˙ M w
29 21 28 bitrd φ X N A g F X = R w Word A g w · ˙ M w