Metamath Proof Explorer


Theorem elrgspn

Description: Membership in the subring generated by the subset A . An element X lies in that subring if and only if X is a linear combination with integer coefficients of products of elements of A . (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses elrgspn.b 𝐵 = ( Base ‘ 𝑅 )
elrgspn.m 𝑀 = ( mulGrp ‘ 𝑅 )
elrgspn.x · = ( .g𝑅 )
elrgspn.n 𝑁 = ( RingSpan ‘ 𝑅 )
elrgspn.f 𝐹 = { 𝑓 ∈ ( ℤ ↑m Word 𝐴 ) ∣ 𝑓 finSupp 0 }
elrgspn.r ( 𝜑𝑅 ∈ Ring )
elrgspn.a ( 𝜑𝐴𝐵 )
elrgspn.1 ( 𝜑𝑋𝐵 )
Assertion elrgspn ( 𝜑 → ( 𝑋 ∈ ( 𝑁𝐴 ) ↔ ∃ 𝑔𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 elrgspn.b 𝐵 = ( Base ‘ 𝑅 )
2 elrgspn.m 𝑀 = ( mulGrp ‘ 𝑅 )
3 elrgspn.x · = ( .g𝑅 )
4 elrgspn.n 𝑁 = ( RingSpan ‘ 𝑅 )
5 elrgspn.f 𝐹 = { 𝑓 ∈ ( ℤ ↑m Word 𝐴 ) ∣ 𝑓 finSupp 0 }
6 elrgspn.r ( 𝜑𝑅 ∈ Ring )
7 elrgspn.a ( 𝜑𝐴𝐵 )
8 elrgspn.1 ( 𝜑𝑋𝐵 )
9 fveq1 ( = 𝑖 → ( 𝑤 ) = ( 𝑖𝑤 ) )
10 9 oveq1d ( = 𝑖 → ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( 𝑖𝑤 ) · ( 𝑀 Σg 𝑤 ) ) )
11 10 mpteq2dv ( = 𝑖 → ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑖𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) )
12 fveq2 ( 𝑤 = 𝑣 → ( 𝑖𝑤 ) = ( 𝑖𝑣 ) )
13 oveq2 ( 𝑤 = 𝑣 → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg 𝑣 ) )
14 12 13 oveq12d ( 𝑤 = 𝑣 → ( ( 𝑖𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( 𝑖𝑣 ) · ( 𝑀 Σg 𝑣 ) ) )
15 14 cbvmptv ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑖𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖𝑣 ) · ( 𝑀 Σg 𝑣 ) ) )
16 11 15 eqtrdi ( = 𝑖 → ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) )
17 16 oveq2d ( = 𝑖 → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) )
18 17 cbvmptv ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ( 𝑖𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) )
19 18 rneqi ran ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ran ( 𝑖𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) )
20 1 2 3 4 5 6 7 19 elrgspnlem4 ( 𝜑 → ( 𝑁𝐴 ) = ran ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) )
21 20 eleq2d ( 𝜑 → ( 𝑋 ∈ ( 𝑁𝐴 ) ↔ 𝑋 ∈ ran ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) )
22 fveq1 ( = 𝑔 → ( 𝑤 ) = ( 𝑔𝑤 ) )
23 22 oveq1d ( = 𝑔 → ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) )
24 23 mpteq2dv ( = 𝑔 → ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) )
25 24 oveq2d ( = 𝑔 → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) )
26 25 cbvmptv ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ( 𝑔𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) )
27 26 elrnmpt ( 𝑋𝐵 → ( 𝑋 ∈ ran ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ↔ ∃ 𝑔𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) )
28 8 27 syl ( 𝜑 → ( 𝑋 ∈ ran ( 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ↔ ∃ 𝑔𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) )
29 21 28 bitrd ( 𝜑 → ( 𝑋 ∈ ( 𝑁𝐴 ) ↔ ∃ 𝑔𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) )