Step |
Hyp |
Ref |
Expression |
1 |
|
elrgspn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
elrgspn.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
elrgspn.x |
⊢ · = ( .g ‘ 𝑅 ) |
4 |
|
elrgspn.n |
⊢ 𝑁 = ( RingSpan ‘ 𝑅 ) |
5 |
|
elrgspn.f |
⊢ 𝐹 = { 𝑓 ∈ ( ℤ ↑m Word 𝐴 ) ∣ 𝑓 finSupp 0 } |
6 |
|
elrgspn.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
elrgspn.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
8 |
|
elrgspn.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
9 |
|
fveq1 |
⊢ ( ℎ = 𝑖 → ( ℎ ‘ 𝑤 ) = ( 𝑖 ‘ 𝑤 ) ) |
10 |
9
|
oveq1d |
⊢ ( ℎ = 𝑖 → ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( 𝑖 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) |
11 |
10
|
mpteq2dv |
⊢ ( ℎ = 𝑖 → ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑣 → ( 𝑖 ‘ 𝑤 ) = ( 𝑖 ‘ 𝑣 ) ) |
13 |
|
oveq2 |
⊢ ( 𝑤 = 𝑣 → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg 𝑣 ) ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝑖 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( 𝑖 ‘ 𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) |
15 |
14
|
cbvmptv |
⊢ ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) |
16 |
11 15
|
eqtrdi |
⊢ ( ℎ = 𝑖 → ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) |
17 |
16
|
oveq2d |
⊢ ( ℎ = 𝑖 → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) ) |
18 |
17
|
cbvmptv |
⊢ ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ( 𝑖 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) ) |
19 |
18
|
rneqi |
⊢ ran ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ran ( 𝑖 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ Word 𝐴 ↦ ( ( 𝑖 ‘ 𝑣 ) · ( 𝑀 Σg 𝑣 ) ) ) ) ) |
20 |
1 2 3 4 5 6 7 19
|
elrgspnlem4 |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐴 ) = ran ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) |
21 |
20
|
eleq2d |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ 𝐴 ) ↔ 𝑋 ∈ ran ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) ) |
22 |
|
fveq1 |
⊢ ( ℎ = 𝑔 → ( ℎ ‘ 𝑤 ) = ( 𝑔 ‘ 𝑤 ) ) |
23 |
22
|
oveq1d |
⊢ ( ℎ = 𝑔 → ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) |
24 |
23
|
mpteq2dv |
⊢ ( ℎ = 𝑔 → ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) |
25 |
24
|
oveq2d |
⊢ ( ℎ = 𝑔 → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
26 |
25
|
cbvmptv |
⊢ ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ( 𝑔 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
27 |
26
|
elrnmpt |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ ran ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ↔ ∃ 𝑔 ∈ 𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) |
28 |
8 27
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ ran ( ℎ ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ℎ ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ↔ ∃ 𝑔 ∈ 𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) |
29 |
21 28
|
bitrd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ 𝐴 ) ↔ ∃ 𝑔 ∈ 𝐹 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) |