Metamath Proof Explorer


Theorem elrgspn

Description: Membership in the subring generated by the subset A . An element X lies in that subring if and only if X is a linear combination with integer coefficients of products of elements of A . (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses elrgspn.b
|- B = ( Base ` R )
elrgspn.m
|- M = ( mulGrp ` R )
elrgspn.x
|- .x. = ( .g ` R )
elrgspn.n
|- N = ( RingSpan ` R )
elrgspn.f
|- F = { f e. ( ZZ ^m Word A ) | f finSupp 0 }
elrgspn.r
|- ( ph -> R e. Ring )
elrgspn.a
|- ( ph -> A C_ B )
elrgspn.1
|- ( ph -> X e. B )
Assertion elrgspn
|- ( ph -> ( X e. ( N ` A ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 elrgspn.b
 |-  B = ( Base ` R )
2 elrgspn.m
 |-  M = ( mulGrp ` R )
3 elrgspn.x
 |-  .x. = ( .g ` R )
4 elrgspn.n
 |-  N = ( RingSpan ` R )
5 elrgspn.f
 |-  F = { f e. ( ZZ ^m Word A ) | f finSupp 0 }
6 elrgspn.r
 |-  ( ph -> R e. Ring )
7 elrgspn.a
 |-  ( ph -> A C_ B )
8 elrgspn.1
 |-  ( ph -> X e. B )
9 fveq1
 |-  ( h = i -> ( h ` w ) = ( i ` w ) )
10 9 oveq1d
 |-  ( h = i -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( i ` w ) .x. ( M gsum w ) ) )
11 10 mpteq2dv
 |-  ( h = i -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) )
12 fveq2
 |-  ( w = v -> ( i ` w ) = ( i ` v ) )
13 oveq2
 |-  ( w = v -> ( M gsum w ) = ( M gsum v ) )
14 12 13 oveq12d
 |-  ( w = v -> ( ( i ` w ) .x. ( M gsum w ) ) = ( ( i ` v ) .x. ( M gsum v ) ) )
15 14 cbvmptv
 |-  ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) = ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) )
16 11 15 eqtrdi
 |-  ( h = i -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) )
17 16 oveq2d
 |-  ( h = i -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) )
18 17 cbvmptv
 |-  ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) = ( i e. F |-> ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) )
19 18 rneqi
 |-  ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) = ran ( i e. F |-> ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) )
20 1 2 3 4 5 6 7 19 elrgspnlem4
 |-  ( ph -> ( N ` A ) = ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) )
21 20 eleq2d
 |-  ( ph -> ( X e. ( N ` A ) <-> X e. ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) ) )
22 fveq1
 |-  ( h = g -> ( h ` w ) = ( g ` w ) )
23 22 oveq1d
 |-  ( h = g -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( g ` w ) .x. ( M gsum w ) ) )
24 23 mpteq2dv
 |-  ( h = g -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) )
25 24 oveq2d
 |-  ( h = g -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) )
26 25 cbvmptv
 |-  ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) = ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) )
27 26 elrnmpt
 |-  ( X e. B -> ( X e. ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) )
28 8 27 syl
 |-  ( ph -> ( X e. ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) )
29 21 28 bitrd
 |-  ( ph -> ( X e. ( N ` A ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) )