Step |
Hyp |
Ref |
Expression |
1 |
|
elrgspn.b |
|- B = ( Base ` R ) |
2 |
|
elrgspn.m |
|- M = ( mulGrp ` R ) |
3 |
|
elrgspn.x |
|- .x. = ( .g ` R ) |
4 |
|
elrgspn.n |
|- N = ( RingSpan ` R ) |
5 |
|
elrgspn.f |
|- F = { f e. ( ZZ ^m Word A ) | f finSupp 0 } |
6 |
|
elrgspn.r |
|- ( ph -> R e. Ring ) |
7 |
|
elrgspn.a |
|- ( ph -> A C_ B ) |
8 |
|
elrgspn.1 |
|- ( ph -> X e. B ) |
9 |
|
fveq1 |
|- ( h = i -> ( h ` w ) = ( i ` w ) ) |
10 |
9
|
oveq1d |
|- ( h = i -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( i ` w ) .x. ( M gsum w ) ) ) |
11 |
10
|
mpteq2dv |
|- ( h = i -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) ) |
12 |
|
fveq2 |
|- ( w = v -> ( i ` w ) = ( i ` v ) ) |
13 |
|
oveq2 |
|- ( w = v -> ( M gsum w ) = ( M gsum v ) ) |
14 |
12 13
|
oveq12d |
|- ( w = v -> ( ( i ` w ) .x. ( M gsum w ) ) = ( ( i ` v ) .x. ( M gsum v ) ) ) |
15 |
14
|
cbvmptv |
|- ( w e. Word A |-> ( ( i ` w ) .x. ( M gsum w ) ) ) = ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) |
16 |
11 15
|
eqtrdi |
|- ( h = i -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) |
17 |
16
|
oveq2d |
|- ( h = i -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) |
18 |
17
|
cbvmptv |
|- ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) = ( i e. F |-> ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) |
19 |
18
|
rneqi |
|- ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) = ran ( i e. F |-> ( R gsum ( v e. Word A |-> ( ( i ` v ) .x. ( M gsum v ) ) ) ) ) |
20 |
1 2 3 4 5 6 7 19
|
elrgspnlem4 |
|- ( ph -> ( N ` A ) = ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) ) |
21 |
20
|
eleq2d |
|- ( ph -> ( X e. ( N ` A ) <-> X e. ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) ) ) |
22 |
|
fveq1 |
|- ( h = g -> ( h ` w ) = ( g ` w ) ) |
23 |
22
|
oveq1d |
|- ( h = g -> ( ( h ` w ) .x. ( M gsum w ) ) = ( ( g ` w ) .x. ( M gsum w ) ) ) |
24 |
23
|
mpteq2dv |
|- ( h = g -> ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) = ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) |
25 |
24
|
oveq2d |
|- ( h = g -> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
26 |
25
|
cbvmptv |
|- ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) = ( g e. F |-> ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) |
27 |
26
|
elrnmpt |
|- ( X e. B -> ( X e. ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
28 |
8 27
|
syl |
|- ( ph -> ( X e. ran ( h e. F |-> ( R gsum ( w e. Word A |-> ( ( h ` w ) .x. ( M gsum w ) ) ) ) ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |
29 |
21 28
|
bitrd |
|- ( ph -> ( X e. ( N ` A ) <-> E. g e. F X = ( R gsum ( w e. Word A |-> ( ( g ` w ) .x. ( M gsum w ) ) ) ) ) ) |