| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrgspnsubrun.b |
|- B = ( Base ` R ) |
| 2 |
|
elrgspnsubrun.t |
|- .x. = ( .r ` R ) |
| 3 |
|
elrgspnsubrun.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
elrgspnsubrun.n |
|- N = ( RingSpan ` R ) |
| 5 |
|
elrgspnsubrun.r |
|- ( ph -> R e. CRing ) |
| 6 |
|
elrgspnsubrun.e |
|- ( ph -> E e. ( SubRing ` R ) ) |
| 7 |
|
elrgspnsubrun.f |
|- ( ph -> F e. ( SubRing ` R ) ) |
| 8 |
|
elrgspnsubrunlem1.p1 |
|- ( ph -> P : F --> E ) |
| 9 |
|
elrgspnsubrunlem1.p2 |
|- ( ph -> P finSupp .0. ) |
| 10 |
|
elrgspnsubrunlem1.x |
|- ( ph -> X = ( R gsum ( e e. F |-> ( ( P ` e ) .x. e ) ) ) ) |
| 11 |
|
elrgspnsubrunlem1.t |
|- T = ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) |
| 12 |
|
fveq1 |
|- ( g = ( ( _Ind ` Word ( E u. F ) ) ` T ) -> ( g ` w ) = ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ) |
| 13 |
12
|
oveq1d |
|- ( g = ( ( _Ind ` Word ( E u. F ) ) ` T ) -> ( ( g ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) |
| 14 |
13
|
mpteq2dv |
|- ( g = ( ( _Ind ` Word ( E u. F ) ) ` T ) -> ( w e. Word ( E u. F ) |-> ( ( g ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) = ( w e. Word ( E u. F ) |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) |
| 15 |
14
|
oveq2d |
|- ( g = ( ( _Ind ` Word ( E u. F ) ) ` T ) -> ( R gsum ( w e. Word ( E u. F ) |-> ( ( g ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) = ( R gsum ( w e. Word ( E u. F ) |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) ) |
| 16 |
15
|
eqeq2d |
|- ( g = ( ( _Ind ` Word ( E u. F ) ) ` T ) -> ( X = ( R gsum ( w e. Word ( E u. F ) |-> ( ( g ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) <-> X = ( R gsum ( w e. Word ( E u. F ) |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) ) ) |
| 17 |
|
breq1 |
|- ( h = ( ( _Ind ` Word ( E u. F ) ) ` T ) -> ( h finSupp 0 <-> ( ( _Ind ` Word ( E u. F ) ) ` T ) finSupp 0 ) ) |
| 18 |
|
zex |
|- ZZ e. _V |
| 19 |
18
|
a1i |
|- ( ph -> ZZ e. _V ) |
| 20 |
6 7
|
unexd |
|- ( ph -> ( E u. F ) e. _V ) |
| 21 |
|
wrdexg |
|- ( ( E u. F ) e. _V -> Word ( E u. F ) e. _V ) |
| 22 |
20 21
|
syl |
|- ( ph -> Word ( E u. F ) e. _V ) |
| 23 |
|
ssun1 |
|- E C_ ( E u. F ) |
| 24 |
8
|
adantr |
|- ( ( ph /\ f e. ( P supp .0. ) ) -> P : F --> E ) |
| 25 |
|
suppssdm |
|- ( P supp .0. ) C_ dom P |
| 26 |
25 8
|
fssdm |
|- ( ph -> ( P supp .0. ) C_ F ) |
| 27 |
26
|
sselda |
|- ( ( ph /\ f e. ( P supp .0. ) ) -> f e. F ) |
| 28 |
24 27
|
ffvelcdmd |
|- ( ( ph /\ f e. ( P supp .0. ) ) -> ( P ` f ) e. E ) |
| 29 |
23 28
|
sselid |
|- ( ( ph /\ f e. ( P supp .0. ) ) -> ( P ` f ) e. ( E u. F ) ) |
| 30 |
|
ssun2 |
|- F C_ ( E u. F ) |
| 31 |
26 30
|
sstrdi |
|- ( ph -> ( P supp .0. ) C_ ( E u. F ) ) |
| 32 |
31
|
sselda |
|- ( ( ph /\ f e. ( P supp .0. ) ) -> f e. ( E u. F ) ) |
| 33 |
29 32
|
s2cld |
|- ( ( ph /\ f e. ( P supp .0. ) ) -> <" ( P ` f ) f "> e. Word ( E u. F ) ) |
| 34 |
33
|
ralrimiva |
|- ( ph -> A. f e. ( P supp .0. ) <" ( P ` f ) f "> e. Word ( E u. F ) ) |
| 35 |
|
eqid |
|- ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) = ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) |
| 36 |
35
|
rnmptss |
|- ( A. f e. ( P supp .0. ) <" ( P ` f ) f "> e. Word ( E u. F ) -> ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) C_ Word ( E u. F ) ) |
| 37 |
34 36
|
syl |
|- ( ph -> ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) C_ Word ( E u. F ) ) |
| 38 |
11 37
|
eqsstrid |
|- ( ph -> T C_ Word ( E u. F ) ) |
| 39 |
|
indf |
|- ( ( Word ( E u. F ) e. _V /\ T C_ Word ( E u. F ) ) -> ( ( _Ind ` Word ( E u. F ) ) ` T ) : Word ( E u. F ) --> { 0 , 1 } ) |
| 40 |
22 38 39
|
syl2anc |
|- ( ph -> ( ( _Ind ` Word ( E u. F ) ) ` T ) : Word ( E u. F ) --> { 0 , 1 } ) |
| 41 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 42 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 43 |
41 42
|
prssd |
|- ( ph -> { 0 , 1 } C_ ZZ ) |
| 44 |
40 43
|
fssd |
|- ( ph -> ( ( _Ind ` Word ( E u. F ) ) ` T ) : Word ( E u. F ) --> ZZ ) |
| 45 |
19 22 44
|
elmapdd |
|- ( ph -> ( ( _Ind ` Word ( E u. F ) ) ` T ) e. ( ZZ ^m Word ( E u. F ) ) ) |
| 46 |
40
|
ffund |
|- ( ph -> Fun ( ( _Ind ` Word ( E u. F ) ) ` T ) ) |
| 47 |
|
indsupp |
|- ( ( Word ( E u. F ) e. _V /\ T C_ Word ( E u. F ) ) -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) supp 0 ) = T ) |
| 48 |
22 38 47
|
syl2anc |
|- ( ph -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) supp 0 ) = T ) |
| 49 |
9
|
fsuppimpd |
|- ( ph -> ( P supp .0. ) e. Fin ) |
| 50 |
|
mptfi |
|- ( ( P supp .0. ) e. Fin -> ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) e. Fin ) |
| 51 |
|
rnfi |
|- ( ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) e. Fin -> ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) e. Fin ) |
| 52 |
49 50 51
|
3syl |
|- ( ph -> ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) e. Fin ) |
| 53 |
11 52
|
eqeltrid |
|- ( ph -> T e. Fin ) |
| 54 |
48 53
|
eqeltrd |
|- ( ph -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) supp 0 ) e. Fin ) |
| 55 |
45 41 46 54
|
isfsuppd |
|- ( ph -> ( ( _Ind ` Word ( E u. F ) ) ` T ) finSupp 0 ) |
| 56 |
17 45 55
|
elrabd |
|- ( ph -> ( ( _Ind ` Word ( E u. F ) ) ` T ) e. { h e. ( ZZ ^m Word ( E u. F ) ) | h finSupp 0 } ) |
| 57 |
5
|
crngringd |
|- ( ph -> R e. Ring ) |
| 58 |
57
|
ringcmnd |
|- ( ph -> R e. CMnd ) |
| 59 |
8
|
ffnd |
|- ( ph -> P Fn F ) |
| 60 |
59
|
adantr |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> P Fn F ) |
| 61 |
7
|
adantr |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> F e. ( SubRing ` R ) ) |
| 62 |
3
|
fvexi |
|- .0. e. _V |
| 63 |
62
|
a1i |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> .0. e. _V ) |
| 64 |
|
simpr |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> e e. ( F \ ( P supp .0. ) ) ) |
| 65 |
60 61 63 64
|
fvdifsupp |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> ( P ` e ) = .0. ) |
| 66 |
65
|
oveq1d |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> ( ( P ` e ) .x. e ) = ( .0. .x. e ) ) |
| 67 |
57
|
adantr |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> R e. Ring ) |
| 68 |
1
|
subrgss |
|- ( F e. ( SubRing ` R ) -> F C_ B ) |
| 69 |
7 68
|
syl |
|- ( ph -> F C_ B ) |
| 70 |
69
|
ssdifssd |
|- ( ph -> ( F \ ( P supp .0. ) ) C_ B ) |
| 71 |
70
|
sselda |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> e e. B ) |
| 72 |
1 2 3 67 71
|
ringlzd |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> ( .0. .x. e ) = .0. ) |
| 73 |
66 72
|
eqtrd |
|- ( ( ph /\ e e. ( F \ ( P supp .0. ) ) ) -> ( ( P ` e ) .x. e ) = .0. ) |
| 74 |
57
|
adantr |
|- ( ( ph /\ e e. F ) -> R e. Ring ) |
| 75 |
1
|
subrgss |
|- ( E e. ( SubRing ` R ) -> E C_ B ) |
| 76 |
6 75
|
syl |
|- ( ph -> E C_ B ) |
| 77 |
8 76
|
fssd |
|- ( ph -> P : F --> B ) |
| 78 |
77
|
ffvelcdmda |
|- ( ( ph /\ e e. F ) -> ( P ` e ) e. B ) |
| 79 |
69
|
sselda |
|- ( ( ph /\ e e. F ) -> e e. B ) |
| 80 |
1 2 74 78 79
|
ringcld |
|- ( ( ph /\ e e. F ) -> ( ( P ` e ) .x. e ) e. B ) |
| 81 |
1 3 58 7 73 49 80 26
|
gsummptres2 |
|- ( ph -> ( R gsum ( e e. F |-> ( ( P ` e ) .x. e ) ) ) = ( R gsum ( e e. ( P supp .0. ) |-> ( ( P ` e ) .x. e ) ) ) ) |
| 82 |
|
nfcv |
|- F/_ e ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) |
| 83 |
|
fveq2 |
|- ( e = ( w ` 1 ) -> ( P ` e ) = ( P ` ( w ` 1 ) ) ) |
| 84 |
|
id |
|- ( e = ( w ` 1 ) -> e = ( w ` 1 ) ) |
| 85 |
83 84
|
oveq12d |
|- ( e = ( w ` 1 ) -> ( ( P ` e ) .x. e ) = ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) |
| 86 |
|
ssidd |
|- ( ph -> B C_ B ) |
| 87 |
26
|
sselda |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> e e. F ) |
| 88 |
87 80
|
syldan |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> ( ( P ` e ) .x. e ) e. B ) |
| 89 |
|
fveq1 |
|- ( w = <" ( P ` f ) f "> -> ( w ` 1 ) = ( <" ( P ` f ) f "> ` 1 ) ) |
| 90 |
89
|
adantl |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( w ` 1 ) = ( <" ( P ` f ) f "> ` 1 ) ) |
| 91 |
|
s2fv1 |
|- ( f e. ( P supp .0. ) -> ( <" ( P ` f ) f "> ` 1 ) = f ) |
| 92 |
91
|
ad2antlr |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( <" ( P ` f ) f "> ` 1 ) = f ) |
| 93 |
90 92
|
eqtrd |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( w ` 1 ) = f ) |
| 94 |
|
simplr |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> f e. ( P supp .0. ) ) |
| 95 |
93 94
|
eqeltrd |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( w ` 1 ) e. ( P supp .0. ) ) |
| 96 |
11
|
eleq2i |
|- ( w e. T <-> w e. ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) ) |
| 97 |
96
|
biimpi |
|- ( w e. T -> w e. ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) ) |
| 98 |
97
|
adantl |
|- ( ( ph /\ w e. T ) -> w e. ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) ) |
| 99 |
35 98
|
elrnmpt2d |
|- ( ( ph /\ w e. T ) -> E. f e. ( P supp .0. ) w = <" ( P ` f ) f "> ) |
| 100 |
95 99
|
r19.29a |
|- ( ( ph /\ w e. T ) -> ( w ` 1 ) e. ( P supp .0. ) ) |
| 101 |
|
fveq2 |
|- ( f = e -> ( P ` f ) = ( P ` e ) ) |
| 102 |
|
id |
|- ( f = e -> f = e ) |
| 103 |
101 102
|
s2eqd |
|- ( f = e -> <" ( P ` f ) f "> = <" ( P ` e ) e "> ) |
| 104 |
103
|
cbvmptv |
|- ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) = ( e e. ( P supp .0. ) |-> <" ( P ` e ) e "> ) |
| 105 |
|
simpr |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> e e. ( P supp .0. ) ) |
| 106 |
77
|
adantr |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> P : F --> B ) |
| 107 |
106 87
|
ffvelcdmd |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> ( P ` e ) e. B ) |
| 108 |
26 69
|
sstrd |
|- ( ph -> ( P supp .0. ) C_ B ) |
| 109 |
108
|
sselda |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> e e. B ) |
| 110 |
107 109
|
s2cld |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> <" ( P ` e ) e "> e. Word B ) |
| 111 |
104 105 110
|
elrnmpt1d |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> <" ( P ` e ) e "> e. ran ( f e. ( P supp .0. ) |-> <" ( P ` f ) f "> ) ) |
| 112 |
111 11
|
eleqtrrdi |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> <" ( P ` e ) e "> e. T ) |
| 113 |
|
simpr |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> w = <" ( P ` f ) f "> ) |
| 114 |
84
|
ad3antlr |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> e = ( w ` 1 ) ) |
| 115 |
113
|
fveq1d |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( w ` 1 ) = ( <" ( P ` f ) f "> ` 1 ) ) |
| 116 |
91
|
ad2antlr |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( <" ( P ` f ) f "> ` 1 ) = f ) |
| 117 |
114 115 116
|
3eqtrrd |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> f = e ) |
| 118 |
117
|
fveq2d |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( P ` f ) = ( P ` e ) ) |
| 119 |
118 117
|
s2eqd |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> <" ( P ` f ) f "> = <" ( P ` e ) e "> ) |
| 120 |
113 119
|
eqtrd |
|- ( ( ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> w = <" ( P ` e ) e "> ) |
| 121 |
99
|
ad4ant13 |
|- ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) -> E. f e. ( P supp .0. ) w = <" ( P ` f ) f "> ) |
| 122 |
120 121
|
r19.29a |
|- ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ e = ( w ` 1 ) ) -> w = <" ( P ` e ) e "> ) |
| 123 |
|
simpr |
|- ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ w = <" ( P ` e ) e "> ) -> w = <" ( P ` e ) e "> ) |
| 124 |
123
|
fveq1d |
|- ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ w = <" ( P ` e ) e "> ) -> ( w ` 1 ) = ( <" ( P ` e ) e "> ` 1 ) ) |
| 125 |
|
s2fv1 |
|- ( e e. ( P supp .0. ) -> ( <" ( P ` e ) e "> ` 1 ) = e ) |
| 126 |
125
|
ad3antlr |
|- ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ w = <" ( P ` e ) e "> ) -> ( <" ( P ` e ) e "> ` 1 ) = e ) |
| 127 |
124 126
|
eqtr2d |
|- ( ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) /\ w = <" ( P ` e ) e "> ) -> e = ( w ` 1 ) ) |
| 128 |
122 127
|
impbida |
|- ( ( ( ph /\ e e. ( P supp .0. ) ) /\ w e. T ) -> ( e = ( w ` 1 ) <-> w = <" ( P ` e ) e "> ) ) |
| 129 |
112 128
|
reu6dv |
|- ( ( ph /\ e e. ( P supp .0. ) ) -> E! w e. T e = ( w ` 1 ) ) |
| 130 |
82 1 3 85 58 49 86 88 100 129
|
gsummptf1o |
|- ( ph -> ( R gsum ( e e. ( P supp .0. ) |-> ( ( P ` e ) .x. e ) ) ) = ( R gsum ( w e. T |-> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) ) ) |
| 131 |
81 130
|
eqtrd |
|- ( ph -> ( R gsum ( e e. F |-> ( ( P ` e ) .x. e ) ) ) = ( R gsum ( w e. T |-> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) ) ) |
| 132 |
22
|
adantr |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> Word ( E u. F ) e. _V ) |
| 133 |
38
|
adantr |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> T C_ Word ( E u. F ) ) |
| 134 |
|
simpr |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> w e. ( Word ( E u. F ) \ T ) ) |
| 135 |
|
ind0 |
|- ( ( Word ( E u. F ) e. _V /\ T C_ Word ( E u. F ) /\ w e. ( Word ( E u. F ) \ T ) ) -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) = 0 ) |
| 136 |
132 133 134 135
|
syl3anc |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) = 0 ) |
| 137 |
136
|
oveq1d |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = ( 0 ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) |
| 138 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 139 |
138
|
crngmgp |
|- ( R e. CRing -> ( mulGrp ` R ) e. CMnd ) |
| 140 |
5 139
|
syl |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 141 |
140
|
cmnmndd |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 142 |
76 69
|
unssd |
|- ( ph -> ( E u. F ) C_ B ) |
| 143 |
|
sswrd |
|- ( ( E u. F ) C_ B -> Word ( E u. F ) C_ Word B ) |
| 144 |
142 143
|
syl |
|- ( ph -> Word ( E u. F ) C_ Word B ) |
| 145 |
144
|
ssdifssd |
|- ( ph -> ( Word ( E u. F ) \ T ) C_ Word B ) |
| 146 |
145
|
sselda |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> w e. Word B ) |
| 147 |
138 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 148 |
147
|
gsumwcl |
|- ( ( ( mulGrp ` R ) e. Mnd /\ w e. Word B ) -> ( ( mulGrp ` R ) gsum w ) e. B ) |
| 149 |
141 146 148
|
syl2an2r |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> ( ( mulGrp ` R ) gsum w ) e. B ) |
| 150 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 151 |
1 3 150
|
mulg0 |
|- ( ( ( mulGrp ` R ) gsum w ) e. B -> ( 0 ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = .0. ) |
| 152 |
149 151
|
syl |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> ( 0 ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = .0. ) |
| 153 |
137 152
|
eqtrd |
|- ( ( ph /\ w e. ( Word ( E u. F ) \ T ) ) -> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = .0. ) |
| 154 |
5
|
crnggrpd |
|- ( ph -> R e. Grp ) |
| 155 |
154
|
adantr |
|- ( ( ph /\ w e. Word ( E u. F ) ) -> R e. Grp ) |
| 156 |
44
|
ffvelcdmda |
|- ( ( ph /\ w e. Word ( E u. F ) ) -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) e. ZZ ) |
| 157 |
144
|
sselda |
|- ( ( ph /\ w e. Word ( E u. F ) ) -> w e. Word B ) |
| 158 |
141 157 148
|
syl2an2r |
|- ( ( ph /\ w e. Word ( E u. F ) ) -> ( ( mulGrp ` R ) gsum w ) e. B ) |
| 159 |
1 150 155 156 158
|
mulgcld |
|- ( ( ph /\ w e. Word ( E u. F ) ) -> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) e. B ) |
| 160 |
1 3 58 22 153 53 159 38
|
gsummptres2 |
|- ( ph -> ( R gsum ( w e. Word ( E u. F ) |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) = ( R gsum ( w e. T |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) ) |
| 161 |
38 144
|
sstrd |
|- ( ph -> T C_ Word B ) |
| 162 |
161
|
sselda |
|- ( ( ph /\ w e. T ) -> w e. Word B ) |
| 163 |
141 162 148
|
syl2an2r |
|- ( ( ph /\ w e. T ) -> ( ( mulGrp ` R ) gsum w ) e. B ) |
| 164 |
1 150
|
mulg1 |
|- ( ( ( mulGrp ` R ) gsum w ) e. B -> ( 1 ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = ( ( mulGrp ` R ) gsum w ) ) |
| 165 |
163 164
|
syl |
|- ( ( ph /\ w e. T ) -> ( 1 ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = ( ( mulGrp ` R ) gsum w ) ) |
| 166 |
22
|
adantr |
|- ( ( ph /\ w e. T ) -> Word ( E u. F ) e. _V ) |
| 167 |
38
|
adantr |
|- ( ( ph /\ w e. T ) -> T C_ Word ( E u. F ) ) |
| 168 |
|
simpr |
|- ( ( ph /\ w e. T ) -> w e. T ) |
| 169 |
|
ind1 |
|- ( ( Word ( E u. F ) e. _V /\ T C_ Word ( E u. F ) /\ w e. T ) -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) = 1 ) |
| 170 |
166 167 168 169
|
syl3anc |
|- ( ( ph /\ w e. T ) -> ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) = 1 ) |
| 171 |
170
|
oveq1d |
|- ( ( ph /\ w e. T ) -> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = ( 1 ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) |
| 172 |
141
|
ad3antrrr |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( mulGrp ` R ) e. Mnd ) |
| 173 |
77
|
ad3antrrr |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> P : F --> B ) |
| 174 |
27
|
ad4ant13 |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> f e. F ) |
| 175 |
173 174
|
ffvelcdmd |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( P ` f ) e. B ) |
| 176 |
108
|
ad3antrrr |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( P supp .0. ) C_ B ) |
| 177 |
176 94
|
sseldd |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> f e. B ) |
| 178 |
138 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
| 179 |
147 178
|
gsumws2 |
|- ( ( ( mulGrp ` R ) e. Mnd /\ ( P ` f ) e. B /\ f e. B ) -> ( ( mulGrp ` R ) gsum <" ( P ` f ) f "> ) = ( ( P ` f ) .x. f ) ) |
| 180 |
172 175 177 179
|
syl3anc |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( ( mulGrp ` R ) gsum <" ( P ` f ) f "> ) = ( ( P ` f ) .x. f ) ) |
| 181 |
|
simpr |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> w = <" ( P ` f ) f "> ) |
| 182 |
181
|
oveq2d |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( ( mulGrp ` R ) gsum w ) = ( ( mulGrp ` R ) gsum <" ( P ` f ) f "> ) ) |
| 183 |
93
|
fveq2d |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( P ` ( w ` 1 ) ) = ( P ` f ) ) |
| 184 |
183 93
|
oveq12d |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) = ( ( P ` f ) .x. f ) ) |
| 185 |
180 182 184
|
3eqtr4rd |
|- ( ( ( ( ph /\ w e. T ) /\ f e. ( P supp .0. ) ) /\ w = <" ( P ` f ) f "> ) -> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) = ( ( mulGrp ` R ) gsum w ) ) |
| 186 |
185 99
|
r19.29a |
|- ( ( ph /\ w e. T ) -> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) = ( ( mulGrp ` R ) gsum w ) ) |
| 187 |
165 171 186
|
3eqtr4d |
|- ( ( ph /\ w e. T ) -> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) = ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) |
| 188 |
187
|
mpteq2dva |
|- ( ph -> ( w e. T |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) = ( w e. T |-> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) ) |
| 189 |
188
|
oveq2d |
|- ( ph -> ( R gsum ( w e. T |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) = ( R gsum ( w e. T |-> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) ) ) |
| 190 |
160 189
|
eqtrd |
|- ( ph -> ( R gsum ( w e. Word ( E u. F ) |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) = ( R gsum ( w e. T |-> ( ( P ` ( w ` 1 ) ) .x. ( w ` 1 ) ) ) ) ) |
| 191 |
131 10 190
|
3eqtr4d |
|- ( ph -> X = ( R gsum ( w e. Word ( E u. F ) |-> ( ( ( ( _Ind ` Word ( E u. F ) ) ` T ) ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) ) |
| 192 |
16 56 191
|
rspcedvdw |
|- ( ph -> E. g e. { h e. ( ZZ ^m Word ( E u. F ) ) | h finSupp 0 } X = ( R gsum ( w e. Word ( E u. F ) |-> ( ( g ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) ) |
| 193 |
|
breq1 |
|- ( h = i -> ( h finSupp 0 <-> i finSupp 0 ) ) |
| 194 |
193
|
cbvrabv |
|- { h e. ( ZZ ^m Word ( E u. F ) ) | h finSupp 0 } = { i e. ( ZZ ^m Word ( E u. F ) ) | i finSupp 0 } |
| 195 |
1 138 150 4 194 57 142
|
elrgspn |
|- ( ph -> ( X e. ( N ` ( E u. F ) ) <-> E. g e. { h e. ( ZZ ^m Word ( E u. F ) ) | h finSupp 0 } X = ( R gsum ( w e. Word ( E u. F ) |-> ( ( g ` w ) ( .g ` R ) ( ( mulGrp ` R ) gsum w ) ) ) ) ) ) |
| 196 |
192 195
|
mpbird |
|- ( ph -> X e. ( N ` ( E u. F ) ) ) |