Metamath Proof Explorer


Theorem elrgspnsubrunlem1

Description: Lemma for elrgspnsubrun , first direction. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elrgspnsubrun.b B = Base R
elrgspnsubrun.t · ˙ = R
elrgspnsubrun.z 0 ˙ = 0 R
elrgspnsubrun.n N = RingSpan R
elrgspnsubrun.r φ R CRing
elrgspnsubrun.e φ E SubRing R
elrgspnsubrun.f φ F SubRing R
elrgspnsubrunlem1.p1 φ P : F E
elrgspnsubrunlem1.p2 φ finSupp 0 ˙ P
elrgspnsubrunlem1.x φ X = R e F P e · ˙ e
elrgspnsubrunlem1.t T = ran f supp 0 ˙ P ⟨“ P f f ”⟩
Assertion elrgspnsubrunlem1 φ X N E F

Proof

Step Hyp Ref Expression
1 elrgspnsubrun.b B = Base R
2 elrgspnsubrun.t · ˙ = R
3 elrgspnsubrun.z 0 ˙ = 0 R
4 elrgspnsubrun.n N = RingSpan R
5 elrgspnsubrun.r φ R CRing
6 elrgspnsubrun.e φ E SubRing R
7 elrgspnsubrun.f φ F SubRing R
8 elrgspnsubrunlem1.p1 φ P : F E
9 elrgspnsubrunlem1.p2 φ finSupp 0 ˙ P
10 elrgspnsubrunlem1.x φ X = R e F P e · ˙ e
11 elrgspnsubrunlem1.t T = ran f supp 0 ˙ P ⟨“ P f f ”⟩
12 fveq1 g = 𝟙 Word E F T g w = 𝟙 Word E F T w
13 12 oveq1d g = 𝟙 Word E F T g w R mulGrp R w = 𝟙 Word E F T w R mulGrp R w
14 13 mpteq2dv g = 𝟙 Word E F T w Word E F g w R mulGrp R w = w Word E F 𝟙 Word E F T w R mulGrp R w
15 14 oveq2d g = 𝟙 Word E F T R w Word E F g w R mulGrp R w = R w Word E F 𝟙 Word E F T w R mulGrp R w
16 15 eqeq2d g = 𝟙 Word E F T X = R w Word E F g w R mulGrp R w X = R w Word E F 𝟙 Word E F T w R mulGrp R w
17 breq1 h = 𝟙 Word E F T finSupp 0 h finSupp 0 𝟙 Word E F T
18 zex V
19 18 a1i φ V
20 6 7 unexd φ E F V
21 wrdexg E F V Word E F V
22 20 21 syl φ Word E F V
23 ssun1 E E F
24 8 adantr φ f supp 0 ˙ P P : F E
25 suppssdm P supp 0 ˙ dom P
26 25 8 fssdm φ P supp 0 ˙ F
27 26 sselda φ f supp 0 ˙ P f F
28 24 27 ffvelcdmd φ f supp 0 ˙ P P f E
29 23 28 sselid φ f supp 0 ˙ P P f E F
30 ssun2 F E F
31 26 30 sstrdi φ P supp 0 ˙ E F
32 31 sselda φ f supp 0 ˙ P f E F
33 29 32 s2cld φ f supp 0 ˙ P ⟨“ P f f ”⟩ Word E F
34 33 ralrimiva φ f supp 0 ˙ P ⟨“ P f f ”⟩ Word E F
35 eqid f supp 0 ˙ P ⟨“ P f f ”⟩ = f supp 0 ˙ P ⟨“ P f f ”⟩
36 35 rnmptss f supp 0 ˙ P ⟨“ P f f ”⟩ Word E F ran f supp 0 ˙ P ⟨“ P f f ”⟩ Word E F
37 34 36 syl φ ran f supp 0 ˙ P ⟨“ P f f ”⟩ Word E F
38 11 37 eqsstrid φ T Word E F
39 indf Word E F V T Word E F 𝟙 Word E F T : Word E F 0 1
40 22 38 39 syl2anc φ 𝟙 Word E F T : Word E F 0 1
41 0zd φ 0
42 1zzd φ 1
43 41 42 prssd φ 0 1
44 40 43 fssd φ 𝟙 Word E F T : Word E F
45 19 22 44 elmapdd φ 𝟙 Word E F T Word E F
46 40 ffund φ Fun 𝟙 Word E F T
47 indsupp Word E F V T Word E F 𝟙 Word E F T supp 0 = T
48 22 38 47 syl2anc φ 𝟙 Word E F T supp 0 = T
49 9 fsuppimpd φ P supp 0 ˙ Fin
50 mptfi P supp 0 ˙ Fin f supp 0 ˙ P ⟨“ P f f ”⟩ Fin
51 rnfi f supp 0 ˙ P ⟨“ P f f ”⟩ Fin ran f supp 0 ˙ P ⟨“ P f f ”⟩ Fin
52 49 50 51 3syl φ ran f supp 0 ˙ P ⟨“ P f f ”⟩ Fin
53 11 52 eqeltrid φ T Fin
54 48 53 eqeltrd φ 𝟙 Word E F T supp 0 Fin
55 45 41 46 54 isfsuppd φ finSupp 0 𝟙 Word E F T
56 17 45 55 elrabd φ 𝟙 Word E F T h Word E F | finSupp 0 h
57 5 crngringd φ R Ring
58 57 ringcmnd φ R CMnd
59 8 ffnd φ P Fn F
60 59 adantr φ e F supp 0 ˙ P P Fn F
61 7 adantr φ e F supp 0 ˙ P F SubRing R
62 3 fvexi 0 ˙ V
63 62 a1i φ e F supp 0 ˙ P 0 ˙ V
64 simpr φ e F supp 0 ˙ P e F supp 0 ˙ P
65 60 61 63 64 fvdifsupp φ e F supp 0 ˙ P P e = 0 ˙
66 65 oveq1d φ e F supp 0 ˙ P P e · ˙ e = 0 ˙ · ˙ e
67 57 adantr φ e F supp 0 ˙ P R Ring
68 1 subrgss F SubRing R F B
69 7 68 syl φ F B
70 69 ssdifssd φ F supp 0 ˙ P B
71 70 sselda φ e F supp 0 ˙ P e B
72 1 2 3 67 71 ringlzd φ e F supp 0 ˙ P 0 ˙ · ˙ e = 0 ˙
73 66 72 eqtrd φ e F supp 0 ˙ P P e · ˙ e = 0 ˙
74 57 adantr φ e F R Ring
75 1 subrgss E SubRing R E B
76 6 75 syl φ E B
77 8 76 fssd φ P : F B
78 77 ffvelcdmda φ e F P e B
79 69 sselda φ e F e B
80 1 2 74 78 79 ringcld φ e F P e · ˙ e B
81 1 3 58 7 73 49 80 26 gsummptres2 φ R e F P e · ˙ e = R e P supp 0 ˙ P e · ˙ e
82 nfcv _ e P w 1 · ˙ w 1
83 fveq2 e = w 1 P e = P w 1
84 id e = w 1 e = w 1
85 83 84 oveq12d e = w 1 P e · ˙ e = P w 1 · ˙ w 1
86 ssidd φ B B
87 26 sselda φ e supp 0 ˙ P e F
88 87 80 syldan φ e supp 0 ˙ P P e · ˙ e B
89 fveq1 w = ⟨“ P f f ”⟩ w 1 = ⟨“ P f f ”⟩ 1
90 89 adantl φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ w 1 = ⟨“ P f f ”⟩ 1
91 s2fv1 f supp 0 ˙ P ⟨“ P f f ”⟩ 1 = f
92 91 ad2antlr φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ ⟨“ P f f ”⟩ 1 = f
93 90 92 eqtrd φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ w 1 = f
94 simplr φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ f supp 0 ˙ P
95 93 94 eqeltrd φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ w 1 supp 0 ˙ P
96 11 eleq2i w T w ran f supp 0 ˙ P ⟨“ P f f ”⟩
97 96 biimpi w T w ran f supp 0 ˙ P ⟨“ P f f ”⟩
98 97 adantl φ w T w ran f supp 0 ˙ P ⟨“ P f f ”⟩
99 35 98 elrnmpt2d φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩
100 95 99 r19.29a φ w T w 1 supp 0 ˙ P
101 fveq2 f = e P f = P e
102 id f = e f = e
103 101 102 s2eqd f = e ⟨“ P f f ”⟩ = ⟨“ P e e ”⟩
104 103 cbvmptv f supp 0 ˙ P ⟨“ P f f ”⟩ = e supp 0 ˙ P ⟨“ P e e ”⟩
105 simpr φ e supp 0 ˙ P e supp 0 ˙ P
106 77 adantr φ e supp 0 ˙ P P : F B
107 106 87 ffvelcdmd φ e supp 0 ˙ P P e B
108 26 69 sstrd φ P supp 0 ˙ B
109 108 sselda φ e supp 0 ˙ P e B
110 107 109 s2cld φ e supp 0 ˙ P ⟨“ P e e ”⟩ Word B
111 104 105 110 elrnmpt1d φ e supp 0 ˙ P ⟨“ P e e ”⟩ ran f supp 0 ˙ P ⟨“ P f f ”⟩
112 111 11 eleqtrrdi φ e supp 0 ˙ P ⟨“ P e e ”⟩ T
113 simpr φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ w = ⟨“ P f f ”⟩
114 84 ad3antlr φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ e = w 1
115 113 fveq1d φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ w 1 = ⟨“ P f f ”⟩ 1
116 91 ad2antlr φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ ⟨“ P f f ”⟩ 1 = f
117 114 115 116 3eqtrrd φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ f = e
118 117 fveq2d φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ P f = P e
119 118 117 s2eqd φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ ⟨“ P f f ”⟩ = ⟨“ P e e ”⟩
120 113 119 eqtrd φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩ w = ⟨“ P e e ”⟩
121 99 ad4ant13 φ e supp 0 ˙ P w T e = w 1 f supp 0 ˙ P w = ⟨“ P f f ”⟩
122 120 121 r19.29a φ e supp 0 ˙ P w T e = w 1 w = ⟨“ P e e ”⟩
123 simpr φ e supp 0 ˙ P w T w = ⟨“ P e e ”⟩ w = ⟨“ P e e ”⟩
124 123 fveq1d φ e supp 0 ˙ P w T w = ⟨“ P e e ”⟩ w 1 = ⟨“ P e e ”⟩ 1
125 s2fv1 e supp 0 ˙ P ⟨“ P e e ”⟩ 1 = e
126 125 ad3antlr φ e supp 0 ˙ P w T w = ⟨“ P e e ”⟩ ⟨“ P e e ”⟩ 1 = e
127 124 126 eqtr2d φ e supp 0 ˙ P w T w = ⟨“ P e e ”⟩ e = w 1
128 122 127 impbida φ e supp 0 ˙ P w T e = w 1 w = ⟨“ P e e ”⟩
129 112 128 reu6dv φ e supp 0 ˙ P ∃! w T e = w 1
130 82 1 3 85 58 49 86 88 100 129 gsummptf1o φ R e P supp 0 ˙ P e · ˙ e = R w T P w 1 · ˙ w 1
131 81 130 eqtrd φ R e F P e · ˙ e = R w T P w 1 · ˙ w 1
132 22 adantr φ w Word E F T Word E F V
133 38 adantr φ w Word E F T T Word E F
134 simpr φ w Word E F T w Word E F T
135 ind0 Word E F V T Word E F w Word E F T 𝟙 Word E F T w = 0
136 132 133 134 135 syl3anc φ w Word E F T 𝟙 Word E F T w = 0
137 136 oveq1d φ w Word E F T 𝟙 Word E F T w R mulGrp R w = 0 R mulGrp R w
138 eqid mulGrp R = mulGrp R
139 138 crngmgp R CRing mulGrp R CMnd
140 5 139 syl φ mulGrp R CMnd
141 140 cmnmndd φ mulGrp R Mnd
142 76 69 unssd φ E F B
143 sswrd E F B Word E F Word B
144 142 143 syl φ Word E F Word B
145 144 ssdifssd φ Word E F T Word B
146 145 sselda φ w Word E F T w Word B
147 138 1 mgpbas B = Base mulGrp R
148 147 gsumwcl mulGrp R Mnd w Word B mulGrp R w B
149 141 146 148 syl2an2r φ w Word E F T mulGrp R w B
150 eqid R = R
151 1 3 150 mulg0 mulGrp R w B 0 R mulGrp R w = 0 ˙
152 149 151 syl φ w Word E F T 0 R mulGrp R w = 0 ˙
153 137 152 eqtrd φ w Word E F T 𝟙 Word E F T w R mulGrp R w = 0 ˙
154 5 crnggrpd φ R Grp
155 154 adantr φ w Word E F R Grp
156 44 ffvelcdmda φ w Word E F 𝟙 Word E F T w
157 144 sselda φ w Word E F w Word B
158 141 157 148 syl2an2r φ w Word E F mulGrp R w B
159 1 150 155 156 158 mulgcld φ w Word E F 𝟙 Word E F T w R mulGrp R w B
160 1 3 58 22 153 53 159 38 gsummptres2 φ R w Word E F 𝟙 Word E F T w R mulGrp R w = R w T 𝟙 Word E F T w R mulGrp R w
161 38 144 sstrd φ T Word B
162 161 sselda φ w T w Word B
163 141 162 148 syl2an2r φ w T mulGrp R w B
164 1 150 mulg1 mulGrp R w B 1 R mulGrp R w = mulGrp R w
165 163 164 syl φ w T 1 R mulGrp R w = mulGrp R w
166 22 adantr φ w T Word E F V
167 38 adantr φ w T T Word E F
168 simpr φ w T w T
169 ind1 Word E F V T Word E F w T 𝟙 Word E F T w = 1
170 166 167 168 169 syl3anc φ w T 𝟙 Word E F T w = 1
171 170 oveq1d φ w T 𝟙 Word E F T w R mulGrp R w = 1 R mulGrp R w
172 141 ad3antrrr φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ mulGrp R Mnd
173 77 ad3antrrr φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ P : F B
174 27 ad4ant13 φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ f F
175 173 174 ffvelcdmd φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ P f B
176 108 ad3antrrr φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ P supp 0 ˙ B
177 176 94 sseldd φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ f B
178 138 2 mgpplusg · ˙ = + mulGrp R
179 147 178 gsumws2 mulGrp R Mnd P f B f B mulGrp R ⟨“ P f f ”⟩ = P f · ˙ f
180 172 175 177 179 syl3anc φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ mulGrp R ⟨“ P f f ”⟩ = P f · ˙ f
181 simpr φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ w = ⟨“ P f f ”⟩
182 181 oveq2d φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ mulGrp R w = mulGrp R ⟨“ P f f ”⟩
183 93 fveq2d φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ P w 1 = P f
184 183 93 oveq12d φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ P w 1 · ˙ w 1 = P f · ˙ f
185 180 182 184 3eqtr4rd φ w T f supp 0 ˙ P w = ⟨“ P f f ”⟩ P w 1 · ˙ w 1 = mulGrp R w
186 185 99 r19.29a φ w T P w 1 · ˙ w 1 = mulGrp R w
187 165 171 186 3eqtr4d φ w T 𝟙 Word E F T w R mulGrp R w = P w 1 · ˙ w 1
188 187 mpteq2dva φ w T 𝟙 Word E F T w R mulGrp R w = w T P w 1 · ˙ w 1
189 188 oveq2d φ R w T 𝟙 Word E F T w R mulGrp R w = R w T P w 1 · ˙ w 1
190 160 189 eqtrd φ R w Word E F 𝟙 Word E F T w R mulGrp R w = R w T P w 1 · ˙ w 1
191 131 10 190 3eqtr4d φ X = R w Word E F 𝟙 Word E F T w R mulGrp R w
192 16 56 191 rspcedvdw φ g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w
193 breq1 h = i finSupp 0 h finSupp 0 i
194 193 cbvrabv h Word E F | finSupp 0 h = i Word E F | finSupp 0 i
195 1 138 150 4 194 57 142 elrgspn φ X N E F g h Word E F | finSupp 0 h X = R w Word E F g w R mulGrp R w
196 192 195 mpbird φ X N E F