| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrgspnsubrun.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
elrgspnsubrun.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
elrgspnsubrun.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
elrgspnsubrun.n |
⊢ 𝑁 = ( RingSpan ‘ 𝑅 ) |
| 5 |
|
elrgspnsubrun.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
elrgspnsubrun.e |
⊢ ( 𝜑 → 𝐸 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
elrgspnsubrun.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 |
|
elrgspnsubrunlem1.p1 |
⊢ ( 𝜑 → 𝑃 : 𝐹 ⟶ 𝐸 ) |
| 9 |
|
elrgspnsubrunlem1.p2 |
⊢ ( 𝜑 → 𝑃 finSupp 0 ) |
| 10 |
|
elrgspnsubrunlem1.x |
⊢ ( 𝜑 → 𝑋 = ( 𝑅 Σg ( 𝑒 ∈ 𝐹 ↦ ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ) ) ) |
| 11 |
|
elrgspnsubrunlem1.t |
⊢ 𝑇 = ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) |
| 12 |
|
fveq1 |
⊢ ( 𝑔 = ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) → ( 𝑔 ‘ 𝑤 ) = ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑔 = ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) → ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝑔 = ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) → ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝑔 = ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( 𝑔 = ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) → ( 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ↔ 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) |
| 17 |
|
breq1 |
⊢ ( ℎ = ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) → ( ℎ finSupp 0 ↔ ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) finSupp 0 ) ) |
| 18 |
|
zex |
⊢ ℤ ∈ V |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ℤ ∈ V ) |
| 20 |
6 7
|
unexd |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 21 |
|
wrdexg |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∈ V → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 23 |
|
ssun1 |
⊢ 𝐸 ⊆ ( 𝐸 ∪ 𝐹 ) |
| 24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) → 𝑃 : 𝐹 ⟶ 𝐸 ) |
| 25 |
|
suppssdm |
⊢ ( 𝑃 supp 0 ) ⊆ dom 𝑃 |
| 26 |
25 8
|
fssdm |
⊢ ( 𝜑 → ( 𝑃 supp 0 ) ⊆ 𝐹 ) |
| 27 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) → 𝑓 ∈ 𝐹 ) |
| 28 |
24 27
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) → ( 𝑃 ‘ 𝑓 ) ∈ 𝐸 ) |
| 29 |
23 28
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) → ( 𝑃 ‘ 𝑓 ) ∈ ( 𝐸 ∪ 𝐹 ) ) |
| 30 |
|
ssun2 |
⊢ 𝐹 ⊆ ( 𝐸 ∪ 𝐹 ) |
| 31 |
26 30
|
sstrdi |
⊢ ( 𝜑 → ( 𝑃 supp 0 ) ⊆ ( 𝐸 ∪ 𝐹 ) ) |
| 32 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) → 𝑓 ∈ ( 𝐸 ∪ 𝐹 ) ) |
| 33 |
29 32
|
s2cld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) → 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝑃 supp 0 ) 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 35 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) = ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) |
| 36 |
35
|
rnmptss |
⊢ ( ∀ 𝑓 ∈ ( 𝑃 supp 0 ) 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ∈ Word ( 𝐸 ∪ 𝐹 ) → ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 37 |
34 36
|
syl |
⊢ ( 𝜑 → ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 38 |
11 37
|
eqsstrid |
⊢ ( 𝜑 → 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 39 |
|
indf |
⊢ ( ( Word ( 𝐸 ∪ 𝐹 ) ∈ V ∧ 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) : Word ( 𝐸 ∪ 𝐹 ) ⟶ { 0 , 1 } ) |
| 40 |
22 38 39
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) : Word ( 𝐸 ∪ 𝐹 ) ⟶ { 0 , 1 } ) |
| 41 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 42 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 43 |
41 42
|
prssd |
⊢ ( 𝜑 → { 0 , 1 } ⊆ ℤ ) |
| 44 |
40 43
|
fssd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 45 |
19 22 44
|
elmapdd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) |
| 46 |
40
|
ffund |
⊢ ( 𝜑 → Fun ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ) |
| 47 |
|
indsupp |
⊢ ( ( Word ( 𝐸 ∪ 𝐹 ) ∈ V ∧ 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) supp 0 ) = 𝑇 ) |
| 48 |
22 38 47
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) supp 0 ) = 𝑇 ) |
| 49 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝑃 supp 0 ) ∈ Fin ) |
| 50 |
|
mptfi |
⊢ ( ( 𝑃 supp 0 ) ∈ Fin → ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ∈ Fin ) |
| 51 |
|
rnfi |
⊢ ( ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ∈ Fin → ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ∈ Fin ) |
| 52 |
49 50 51
|
3syl |
⊢ ( 𝜑 → ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ∈ Fin ) |
| 53 |
11 52
|
eqeltrid |
⊢ ( 𝜑 → 𝑇 ∈ Fin ) |
| 54 |
48 53
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) supp 0 ) ∈ Fin ) |
| 55 |
45 41 46 54
|
isfsuppd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) finSupp 0 ) |
| 56 |
17 45 55
|
elrabd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } ) |
| 57 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 58 |
57
|
ringcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 59 |
8
|
ffnd |
⊢ ( 𝜑 → 𝑃 Fn 𝐹 ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → 𝑃 Fn 𝐹 ) |
| 61 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 62 |
3
|
fvexi |
⊢ 0 ∈ V |
| 63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → 0 ∈ V ) |
| 64 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) |
| 65 |
60 61 63 64
|
fvdifsupp |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → ( 𝑃 ‘ 𝑒 ) = 0 ) |
| 66 |
65
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) = ( 0 · 𝑒 ) ) |
| 67 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → 𝑅 ∈ Ring ) |
| 68 |
1
|
subrgss |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝑅 ) → 𝐹 ⊆ 𝐵 ) |
| 69 |
7 68
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
| 70 |
69
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ⊆ 𝐵 ) |
| 71 |
70
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → 𝑒 ∈ 𝐵 ) |
| 72 |
1 2 3 67 71
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → ( 0 · 𝑒 ) = 0 ) |
| 73 |
66 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝐹 ∖ ( 𝑃 supp 0 ) ) ) → ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) = 0 ) |
| 74 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐹 ) → 𝑅 ∈ Ring ) |
| 75 |
1
|
subrgss |
⊢ ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ⊆ 𝐵 ) |
| 76 |
6 75
|
syl |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
| 77 |
8 76
|
fssd |
⊢ ( 𝜑 → 𝑃 : 𝐹 ⟶ 𝐵 ) |
| 78 |
77
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐹 ) → ( 𝑃 ‘ 𝑒 ) ∈ 𝐵 ) |
| 79 |
69
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐹 ) → 𝑒 ∈ 𝐵 ) |
| 80 |
1 2 74 78 79
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ 𝐹 ) → ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ∈ 𝐵 ) |
| 81 |
1 3 58 7 73 49 80 26
|
gsummptres2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑒 ∈ 𝐹 ↦ ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ) ) = ( 𝑅 Σg ( 𝑒 ∈ ( 𝑃 supp 0 ) ↦ ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ) ) ) |
| 82 |
|
nfcv |
⊢ Ⅎ 𝑒 ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) |
| 83 |
|
fveq2 |
⊢ ( 𝑒 = ( 𝑤 ‘ 1 ) → ( 𝑃 ‘ 𝑒 ) = ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) ) |
| 84 |
|
id |
⊢ ( 𝑒 = ( 𝑤 ‘ 1 ) → 𝑒 = ( 𝑤 ‘ 1 ) ) |
| 85 |
83 84
|
oveq12d |
⊢ ( 𝑒 = ( 𝑤 ‘ 1 ) → ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) = ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) |
| 86 |
|
ssidd |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐵 ) |
| 87 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 𝑒 ∈ 𝐹 ) |
| 88 |
87 80
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ∈ 𝐵 ) |
| 89 |
|
fveq1 |
⊢ ( 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 → ( 𝑤 ‘ 1 ) = ( 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ‘ 1 ) ) |
| 90 |
89
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑤 ‘ 1 ) = ( 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ‘ 1 ) ) |
| 91 |
|
s2fv1 |
⊢ ( 𝑓 ∈ ( 𝑃 supp 0 ) → ( 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ‘ 1 ) = 𝑓 ) |
| 92 |
91
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ‘ 1 ) = 𝑓 ) |
| 93 |
90 92
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑤 ‘ 1 ) = 𝑓 ) |
| 94 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑓 ∈ ( 𝑃 supp 0 ) ) |
| 95 |
93 94
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑤 ‘ 1 ) ∈ ( 𝑃 supp 0 ) ) |
| 96 |
11
|
eleq2i |
⊢ ( 𝑤 ∈ 𝑇 ↔ 𝑤 ∈ ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ) |
| 97 |
96
|
biimpi |
⊢ ( 𝑤 ∈ 𝑇 → 𝑤 ∈ ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ) |
| 98 |
97
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → 𝑤 ∈ ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ) |
| 99 |
35 98
|
elrnmpt2d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ∃ 𝑓 ∈ ( 𝑃 supp 0 ) 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) |
| 100 |
95 99
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 𝑤 ‘ 1 ) ∈ ( 𝑃 supp 0 ) ) |
| 101 |
|
fveq2 |
⊢ ( 𝑓 = 𝑒 → ( 𝑃 ‘ 𝑓 ) = ( 𝑃 ‘ 𝑒 ) ) |
| 102 |
|
id |
⊢ ( 𝑓 = 𝑒 → 𝑓 = 𝑒 ) |
| 103 |
101 102
|
s2eqd |
⊢ ( 𝑓 = 𝑒 → 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) |
| 104 |
103
|
cbvmptv |
⊢ ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) = ( 𝑒 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) |
| 105 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 𝑒 ∈ ( 𝑃 supp 0 ) ) |
| 106 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 𝑃 : 𝐹 ⟶ 𝐵 ) |
| 107 |
106 87
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → ( 𝑃 ‘ 𝑒 ) ∈ 𝐵 ) |
| 108 |
26 69
|
sstrd |
⊢ ( 𝜑 → ( 𝑃 supp 0 ) ⊆ 𝐵 ) |
| 109 |
108
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 𝑒 ∈ 𝐵 ) |
| 110 |
107 109
|
s2cld |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ∈ Word 𝐵 ) |
| 111 |
104 105 110
|
elrnmpt1d |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ∈ ran ( 𝑓 ∈ ( 𝑃 supp 0 ) ↦ 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ) |
| 112 |
111 11
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ∈ 𝑇 ) |
| 113 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) |
| 114 |
84
|
ad3antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑒 = ( 𝑤 ‘ 1 ) ) |
| 115 |
113
|
fveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑤 ‘ 1 ) = ( 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ‘ 1 ) ) |
| 116 |
91
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ‘ 1 ) = 𝑓 ) |
| 117 |
114 115 116
|
3eqtrrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑓 = 𝑒 ) |
| 118 |
117
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑃 ‘ 𝑓 ) = ( 𝑃 ‘ 𝑒 ) ) |
| 119 |
118 117
|
s2eqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) |
| 120 |
113 119
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) |
| 121 |
99
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) → ∃ 𝑓 ∈ ( 𝑃 supp 0 ) 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) |
| 122 |
120 121
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑒 = ( 𝑤 ‘ 1 ) ) → 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) |
| 123 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) → 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) |
| 124 |
123
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) → ( 𝑤 ‘ 1 ) = ( 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ‘ 1 ) ) |
| 125 |
|
s2fv1 |
⊢ ( 𝑒 ∈ ( 𝑃 supp 0 ) → ( 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ‘ 1 ) = 𝑒 ) |
| 126 |
125
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) → ( 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ‘ 1 ) = 𝑒 ) |
| 127 |
124 126
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) → 𝑒 = ( 𝑤 ‘ 1 ) ) |
| 128 |
122 127
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 ∈ 𝑇 ) → ( 𝑒 = ( 𝑤 ‘ 1 ) ↔ 𝑤 = 〈“ ( 𝑃 ‘ 𝑒 ) 𝑒 ”〉 ) ) |
| 129 |
112 128
|
reu6dv |
⊢ ( ( 𝜑 ∧ 𝑒 ∈ ( 𝑃 supp 0 ) ) → ∃! 𝑤 ∈ 𝑇 𝑒 = ( 𝑤 ‘ 1 ) ) |
| 130 |
82 1 3 85 58 49 86 88 100 129
|
gsummptf1o |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑒 ∈ ( 𝑃 supp 0 ) ↦ ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ 𝑇 ↦ ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) ) ) |
| 131 |
81 130
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑒 ∈ 𝐹 ↦ ( ( 𝑃 ‘ 𝑒 ) · 𝑒 ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ 𝑇 ↦ ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) ) ) |
| 132 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 133 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 134 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) |
| 135 |
|
ind0 |
⊢ ( ( Word ( 𝐸 ∪ 𝐹 ) ∈ V ∧ 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) = 0 ) |
| 136 |
132 133 134 135
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) = 0 ) |
| 137 |
136
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 138 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 139 |
138
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 140 |
5 139
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 141 |
140
|
cmnmndd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 142 |
76 69
|
unssd |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) ⊆ 𝐵 ) |
| 143 |
|
sswrd |
⊢ ( ( 𝐸 ∪ 𝐹 ) ⊆ 𝐵 → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 144 |
142 143
|
syl |
⊢ ( 𝜑 → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 145 |
144
|
ssdifssd |
⊢ ( 𝜑 → ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ⊆ Word 𝐵 ) |
| 146 |
145
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → 𝑤 ∈ Word 𝐵 ) |
| 147 |
138 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 148 |
147
|
gsumwcl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 149 |
141 146 148
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 150 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 151 |
1 3 150
|
mulg0 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 → ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 152 |
149 151
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 153 |
137 152
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ 𝑇 ) ) → ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 154 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 155 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝑅 ∈ Grp ) |
| 156 |
44
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ∈ ℤ ) |
| 157 |
144
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝑤 ∈ Word 𝐵 ) |
| 158 |
141 157 148
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 159 |
1 150 155 156 158
|
mulgcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 ) |
| 160 |
1 3 58 22 153 53 159 38
|
gsummptres2 |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ 𝑇 ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 161 |
38 144
|
sstrd |
⊢ ( 𝜑 → 𝑇 ⊆ Word 𝐵 ) |
| 162 |
161
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → 𝑤 ∈ Word 𝐵 ) |
| 163 |
141 162 148
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 164 |
1 150
|
mulg1 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 → ( 1 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) |
| 165 |
163 164
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( 1 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) |
| 166 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 167 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 168 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → 𝑤 ∈ 𝑇 ) |
| 169 |
|
ind1 |
⊢ ( ( Word ( 𝐸 ∪ 𝐹 ) ∈ V ∧ 𝑇 ⊆ Word ( 𝐸 ∪ 𝐹 ) ∧ 𝑤 ∈ 𝑇 ) → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) = 1 ) |
| 170 |
166 167 168 169
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) = 1 ) |
| 171 |
170
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( 1 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 172 |
141
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 173 |
77
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑃 : 𝐹 ⟶ 𝐵 ) |
| 174 |
27
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑓 ∈ 𝐹 ) |
| 175 |
173 174
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑃 ‘ 𝑓 ) ∈ 𝐵 ) |
| 176 |
108
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑃 supp 0 ) ⊆ 𝐵 ) |
| 177 |
176 94
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑓 ∈ 𝐵 ) |
| 178 |
138 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 179 |
147 178
|
gsumws2 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( 𝑃 ‘ 𝑓 ) ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) = ( ( 𝑃 ‘ 𝑓 ) · 𝑓 ) ) |
| 180 |
172 175 177 179
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( ( mulGrp ‘ 𝑅 ) Σg 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) = ( ( 𝑃 ‘ 𝑓 ) · 𝑓 ) ) |
| 181 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) |
| 182 |
181
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( mulGrp ‘ 𝑅 ) Σg 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) ) |
| 183 |
93
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) = ( 𝑃 ‘ 𝑓 ) ) |
| 184 |
183 93
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) = ( ( 𝑃 ‘ 𝑓 ) · 𝑓 ) ) |
| 185 |
180 182 184
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) ∧ 𝑓 ∈ ( 𝑃 supp 0 ) ) ∧ 𝑤 = 〈“ ( 𝑃 ‘ 𝑓 ) 𝑓 ”〉 ) → ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) |
| 186 |
185 99
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) |
| 187 |
165 171 186
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑇 ) → ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) |
| 188 |
187
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑇 ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) = ( 𝑤 ∈ 𝑇 ↦ ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) ) |
| 189 |
188
|
oveq2d |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑤 ∈ 𝑇 ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ 𝑇 ↦ ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) ) ) |
| 190 |
160 189
|
eqtrd |
⊢ ( 𝜑 → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ 𝑇 ↦ ( ( 𝑃 ‘ ( 𝑤 ‘ 1 ) ) · ( 𝑤 ‘ 1 ) ) ) ) ) |
| 191 |
131 10 190
|
3eqtr4d |
⊢ ( 𝜑 → 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( ( ( 𝟭 ‘ Word ( 𝐸 ∪ 𝐹 ) ) ‘ 𝑇 ) ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 192 |
16 56 191
|
rspcedvdw |
⊢ ( 𝜑 → ∃ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 193 |
|
breq1 |
⊢ ( ℎ = 𝑖 → ( ℎ finSupp 0 ↔ 𝑖 finSupp 0 ) ) |
| 194 |
193
|
cbvrabv |
⊢ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } = { 𝑖 ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ 𝑖 finSupp 0 } |
| 195 |
1 138 150 4 194 57 142
|
elrgspn |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ↔ ∃ 𝑔 ∈ { ℎ ∈ ( ℤ ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∣ ℎ finSupp 0 } 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝑔 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) |
| 196 |
192 195
|
mpbird |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ ( 𝐸 ∪ 𝐹 ) ) ) |