| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrgspnsubrun.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
elrgspnsubrun.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 3 |
|
elrgspnsubrun.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
elrgspnsubrun.n |
⊢ 𝑁 = ( RingSpan ‘ 𝑅 ) |
| 5 |
|
elrgspnsubrun.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 6 |
|
elrgspnsubrun.e |
⊢ ( 𝜑 → 𝐸 ∈ ( SubRing ‘ 𝑅 ) ) |
| 7 |
|
elrgspnsubrun.f |
⊢ ( 𝜑 → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 8 |
|
elrgspnsubrunlem2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
|
elrgspnsubrunlem2.1 |
⊢ ( 𝜑 → 𝐺 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 10 |
|
elrgspnsubrunlem2.2 |
⊢ ( 𝜑 → 𝐺 finSupp 0 ) |
| 11 |
|
elrgspnsubrunlem2.3 |
⊢ ( 𝜑 → 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 12 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → 𝐸 ∈ ( SubRing ‘ 𝑅 ) ) |
| 13 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 14 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 15 |
14
|
ringabld |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
| 16 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 𝑅 ∈ Abel ) |
| 17 |
|
vex |
⊢ 𝑞 ∈ V |
| 18 |
17
|
cnvex |
⊢ ◡ 𝑞 ∈ V |
| 19 |
18
|
imaex |
⊢ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V |
| 20 |
19
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V ) |
| 21 |
|
subrgsubg |
⊢ ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 22 |
6 21
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 24 |
|
eqid |
⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) |
| 25 |
5
|
crnggrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 26 |
25
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Grp ) |
| 27 |
6 7
|
xpexd |
⊢ ( 𝜑 → ( 𝐸 × 𝐹 ) ∈ V ) |
| 28 |
6 7
|
unexd |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 29 |
|
wrdexg |
⊢ ( ( 𝐸 ∪ 𝐹 ) ∈ V → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 30 |
28 29
|
syl |
⊢ ( 𝜑 → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 31 |
27 30
|
elmapd |
⊢ ( 𝜑 → ( 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ↔ 𝑞 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) ) |
| 32 |
31
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → 𝑞 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) |
| 33 |
32
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → Fun 𝑞 ) |
| 34 |
33
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → Fun 𝑞 ) |
| 35 |
|
fvimacnvi |
⊢ ( ( Fun 𝑞 ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) |
| 36 |
34 35
|
sylancom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) |
| 37 |
|
xp1st |
⊢ ( ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐸 ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐸 ) |
| 39 |
23
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 40 |
9
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 41 |
|
cnvimass |
⊢ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ dom 𝑞 |
| 42 |
32
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → dom 𝑞 = Word ( 𝐸 ∪ 𝐹 ) ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → dom 𝑞 = Word ( 𝐸 ∪ 𝐹 ) ) |
| 44 |
41 43
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 45 |
44
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 46 |
40 45
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺 ‘ 𝑣 ) ∈ ℤ ) |
| 47 |
1 24 26 38 39 46
|
subgmulgcld |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ∈ 𝐸 ) |
| 48 |
47
|
fmpttd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) : ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⟶ 𝐸 ) |
| 49 |
9
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( 𝐺 ‘ 𝑣 ) ) ) |
| 50 |
49 10
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( 𝐺 ‘ 𝑣 ) ) finSupp 0 ) |
| 51 |
50
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( 𝐺 ‘ 𝑣 ) ) finSupp 0 ) |
| 52 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 0 ∈ ℤ ) |
| 53 |
51 44 52
|
fmptssfisupp |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( 𝐺 ‘ 𝑣 ) ) finSupp 0 ) |
| 54 |
1
|
subrgss |
⊢ ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ⊆ 𝐵 ) |
| 55 |
6 54
|
syl |
⊢ ( 𝜑 → 𝐸 ⊆ 𝐵 ) |
| 56 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 𝐸 ⊆ 𝐵 ) |
| 57 |
56
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝐸 ) → 𝑦 ∈ 𝐵 ) |
| 58 |
1 3 24
|
mulg0 |
⊢ ( 𝑦 ∈ 𝐵 → ( 0 ( .g ‘ 𝑅 ) 𝑦 ) = 0 ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝐸 ) → ( 0 ( .g ‘ 𝑅 ) 𝑦 ) = 0 ) |
| 60 |
3
|
fvexi |
⊢ 0 ∈ V |
| 61 |
60
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 0 ∈ V ) |
| 62 |
53 59 46 38 61
|
fsuppssov1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) finSupp 0 ) |
| 63 |
3 16 20 23 48 62
|
gsumsubgcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ∈ 𝐸 ) |
| 64 |
63
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) : 𝐹 ⟶ 𝐸 ) |
| 65 |
12 13 64
|
elmapdd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ∈ ( 𝐸 ↑m 𝐹 ) ) |
| 66 |
|
breq1 |
⊢ ( 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) → ( 𝑝 finSupp 0 ↔ ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) finSupp 0 ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) → ( 𝑝 finSupp 0 ↔ ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) finSupp 0 ) ) |
| 68 |
|
nfv |
⊢ Ⅎ 𝑓 ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) |
| 69 |
|
nfmpt1 |
⊢ Ⅎ 𝑓 ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) |
| 70 |
69
|
nfeq2 |
⊢ Ⅎ 𝑓 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) |
| 71 |
68 70
|
nfan |
⊢ Ⅎ 𝑓 ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) |
| 72 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) → 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) |
| 73 |
|
ovexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ∈ V ) |
| 74 |
72 73
|
fvmpt2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑝 ‘ 𝑓 ) = ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) |
| 75 |
74
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) = ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) |
| 76 |
71 75
|
mpteq2da |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) → ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) = ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) |
| 77 |
76
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) → ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) |
| 78 |
77
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) → ( 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ↔ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) ) |
| 79 |
67 78
|
anbi12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) → ( ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ↔ ( ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) ) ) |
| 80 |
60
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → 0 ∈ V ) |
| 81 |
64
|
ffund |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → Fun ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) ) |
| 82 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → Fun 𝑞 ) |
| 83 |
10
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐺 supp 0 ) ∈ Fin ) |
| 84 |
83
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝐺 supp 0 ) ∈ Fin ) |
| 85 |
|
imafi |
⊢ ( ( Fun 𝑞 ∧ ( 𝐺 supp 0 ) ∈ Fin ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 86 |
82 84 85
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 87 |
|
rnfi |
⊢ ( ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin → ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 88 |
86 87
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 89 |
9
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 90 |
89
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 91 |
30
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 92 |
|
0zd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 0 ∈ ℤ ) |
| 93 |
|
snssi |
⊢ ( 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 95 |
|
xpss2 |
⊢ ( { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 96 |
|
ssun2 |
⊢ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( ( ( 𝐸 ∖ dom ( 𝑞 “ ( 𝐺 supp 0 ) ) ) × 𝐹 ) ∪ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 97 |
|
difxp |
⊢ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) = ( ( ( 𝐸 ∖ dom ( 𝑞 “ ( 𝐺 supp 0 ) ) ) × 𝐹 ) ∪ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 98 |
96 97
|
sseqtrri |
⊢ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 99 |
95 98
|
sstrdi |
⊢ ( { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 100 |
94 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 101 |
|
imassrn |
⊢ ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ran 𝑞 |
| 102 |
32
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ran 𝑞 ⊆ ( 𝐸 × 𝐹 ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ran 𝑞 ⊆ ( 𝐸 × 𝐹 ) ) |
| 104 |
101 103
|
sstrid |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( 𝐸 × 𝐹 ) ) |
| 105 |
|
relxp |
⊢ Rel ( 𝐸 × 𝐹 ) |
| 106 |
|
relss |
⊢ ( ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( 𝐸 × 𝐹 ) → ( Rel ( 𝐸 × 𝐹 ) → Rel ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 107 |
105 106
|
mpi |
⊢ ( ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( 𝐸 × 𝐹 ) → Rel ( 𝑞 “ ( 𝐺 supp 0 ) ) ) |
| 108 |
|
relssdmrn |
⊢ ( Rel ( 𝑞 “ ( 𝐺 supp 0 ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 109 |
104 107 108
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 110 |
109
|
sscond |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 111 |
100 110
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 112 |
|
imass2 |
⊢ ( ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( ◡ 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 113 |
111 112
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( ◡ 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 114 |
113
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( ◡ 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 115 |
82
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → Fun 𝑞 ) |
| 116 |
|
difpreima |
⊢ ( Fun 𝑞 → ( ◡ 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) = ( ( ◡ 𝑞 “ ( 𝐸 × 𝐹 ) ) ∖ ( ◡ 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 117 |
115 116
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) = ( ( ◡ 𝑞 “ ( 𝐸 × 𝐹 ) ) ∖ ( ◡ 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ) |
| 118 |
|
cnvimass |
⊢ ( ◡ 𝑞 “ ( 𝐸 × 𝐹 ) ) ⊆ dom 𝑞 |
| 119 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → dom 𝑞 = Word ( 𝐸 ∪ 𝐹 ) ) |
| 120 |
118 119
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × 𝐹 ) ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 121 |
|
suppssdm |
⊢ ( 𝐺 supp 0 ) ⊆ dom 𝐺 |
| 122 |
9
|
fdmd |
⊢ ( 𝜑 → dom 𝐺 = Word ( 𝐸 ∪ 𝐹 ) ) |
| 123 |
122
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → dom 𝐺 = Word ( 𝐸 ∪ 𝐹 ) ) |
| 124 |
121 123
|
sseqtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 125 |
124 119
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 supp 0 ) ⊆ dom 𝑞 ) |
| 126 |
|
sseqin2 |
⊢ ( ( 𝐺 supp 0 ) ⊆ dom 𝑞 ↔ ( dom 𝑞 ∩ ( 𝐺 supp 0 ) ) = ( 𝐺 supp 0 ) ) |
| 127 |
126
|
biimpi |
⊢ ( ( 𝐺 supp 0 ) ⊆ dom 𝑞 → ( dom 𝑞 ∩ ( 𝐺 supp 0 ) ) = ( 𝐺 supp 0 ) ) |
| 128 |
|
dminss |
⊢ ( dom 𝑞 ∩ ( 𝐺 supp 0 ) ) ⊆ ( ◡ 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) |
| 129 |
127 128
|
eqsstrrdi |
⊢ ( ( 𝐺 supp 0 ) ⊆ dom 𝑞 → ( 𝐺 supp 0 ) ⊆ ( ◡ 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 130 |
125 129
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 supp 0 ) ⊆ ( ◡ 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) |
| 131 |
120 130
|
ssdif2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ( ◡ 𝑞 “ ( 𝐸 × 𝐹 ) ) ∖ ( ◡ 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) |
| 132 |
117 131
|
eqsstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) |
| 133 |
114 132
|
sstrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) |
| 134 |
133
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) |
| 135 |
90 91 92 134
|
fvdifsupp |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺 ‘ 𝑣 ) = 0 ) |
| 136 |
135
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) = ( 0 ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) |
| 137 |
55
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐸 ⊆ 𝐵 ) |
| 138 |
32
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑞 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) |
| 139 |
41 42
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 140 |
139
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 141 |
140
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 142 |
138 141
|
ffvelcdmd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × 𝐹 ) ) |
| 143 |
|
xp1st |
⊢ ( ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × 𝐹 ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐸 ) |
| 144 |
142 143
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐸 ) |
| 145 |
137 144
|
sseldd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐵 ) |
| 146 |
1 3 24
|
mulg0 |
⊢ ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐵 → ( 0 ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) = 0 ) |
| 147 |
145 146
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 0 ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) = 0 ) |
| 148 |
136 147
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) = 0 ) |
| 149 |
148
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) = ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) ) |
| 151 |
25
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 152 |
151
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → 𝑅 ∈ Mnd ) |
| 153 |
19
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V ) |
| 154 |
3
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) = 0 ) |
| 155 |
152 153 154
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) = 0 ) |
| 156 |
150 155
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) = 0 ) |
| 157 |
156 13
|
suppss2 |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) supp 0 ) ⊆ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) |
| 158 |
88 157
|
ssfid |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) supp 0 ) ∈ Fin ) |
| 159 |
65 80 81 158
|
isfsuppd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) finSupp 0 ) |
| 160 |
15
|
ablcmnd |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 161 |
160
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → 𝑅 ∈ CMnd ) |
| 162 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 163 |
89
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝐺 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 164 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 165 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 0 ∈ ℤ ) |
| 166 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) |
| 167 |
163 164 165 166
|
fvdifsupp |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( 𝐺 ‘ 𝑤 ) = 0 ) |
| 168 |
167
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 169 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 170 |
169
|
crngmgp |
⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 171 |
5 170
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 172 |
171
|
cmnmndd |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 173 |
172
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 174 |
1
|
subrgss |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝑅 ) → 𝐹 ⊆ 𝐵 ) |
| 175 |
7 174
|
syl |
⊢ ( 𝜑 → 𝐹 ⊆ 𝐵 ) |
| 176 |
55 175
|
unssd |
⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) ⊆ 𝐵 ) |
| 177 |
|
sswrd |
⊢ ( ( 𝐸 ∪ 𝐹 ) ⊆ 𝐵 → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 178 |
176 177
|
syl |
⊢ ( 𝜑 → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 179 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 180 |
179
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 181 |
166
|
eldifad |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 182 |
180 181
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝑤 ∈ Word 𝐵 ) |
| 183 |
169 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 184 |
183
|
gsumwcl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 185 |
173 182 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 186 |
1 3 24
|
mulg0 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 → ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 187 |
185 186
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 188 |
168 187
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 189 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( 𝐺 supp 0 ) ∈ Fin ) |
| 190 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝑅 ∈ Grp ) |
| 191 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → 𝐺 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 192 |
191
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ ℤ ) |
| 193 |
172
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 194 |
179
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝑤 ∈ Word 𝐵 ) |
| 195 |
193 194 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 196 |
1 24 190 192 195
|
mulgcld |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 ) |
| 197 |
121 122
|
sseqtrid |
⊢ ( 𝜑 → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 198 |
197
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 199 |
1 3 161 162 188 189 196 198
|
gsummptres2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 200 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) ) |
| 201 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑅 ∈ Grp ) |
| 202 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝐺 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 203 |
198
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 204 |
202 203
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ ℤ ) |
| 205 |
172
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 206 |
198 179
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( 𝐺 supp 0 ) ⊆ Word 𝐵 ) |
| 207 |
206
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑤 ∈ Word 𝐵 ) |
| 208 |
205 207 184
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 209 |
1 24 201 204 208
|
mulgcld |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 ) |
| 210 |
32
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑞 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) |
| 211 |
210 203
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 𝑞 ‘ 𝑤 ) ∈ ( 𝐸 × 𝐹 ) ) |
| 212 |
|
xp2nd |
⊢ ( ( 𝑞 ‘ 𝑤 ) ∈ ( 𝐸 × 𝐹 ) → ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ∈ 𝐹 ) |
| 213 |
211 212
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ∈ 𝐹 ) |
| 214 |
|
2fveq3 |
⊢ ( 𝑣 = 𝑤 → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) = ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) |
| 215 |
214
|
cbvmptv |
⊢ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) = ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) |
| 216 |
1 3 161 189 200 209 213 215
|
gsummpt2co |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) ) |
| 217 |
199 216
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) ) |
| 218 |
217
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) ) |
| 219 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 220 |
14
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Ring ) |
| 221 |
55
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐸 ⊆ 𝐵 ) |
| 222 |
32
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑞 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) |
| 223 |
139
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 224 |
223
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 225 |
222 224
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × 𝐹 ) ) |
| 226 |
225 143
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐸 ) |
| 227 |
221 226
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐵 ) |
| 228 |
227
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐵 ) |
| 229 |
200 174
|
syl |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → 𝐹 ⊆ 𝐵 ) |
| 230 |
229
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 𝑓 ∈ 𝐵 ) |
| 231 |
230
|
ad4ant13 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑓 ∈ 𝐵 ) |
| 232 |
1 24 2
|
mulgass2 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( 𝐺 ‘ 𝑣 ) ∈ ℤ ∧ ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐵 ∧ 𝑓 ∈ 𝐵 ) ) → ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) = ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · 𝑓 ) ) ) |
| 233 |
220 46 228 231 232
|
syl13anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) = ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · 𝑓 ) ) ) |
| 234 |
|
oveq2 |
⊢ ( 𝑤 = 𝑣 → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) |
| 235 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑣 → ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) = ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 236 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑣 → ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) = ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 237 |
235 236
|
oveq12d |
⊢ ( 𝑤 = 𝑣 → ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) |
| 238 |
234 237
|
eqeq12d |
⊢ ( 𝑤 = 𝑣 → ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ↔ ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) |
| 239 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) |
| 240 |
238 239 45
|
rspcdva |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) |
| 241 |
32
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) → 𝑞 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 242 |
241
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑞 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 243 |
|
elpreima |
⊢ ( 𝑞 Fn Word ( 𝐸 ∪ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↔ ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ∧ ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) ) ) |
| 244 |
243
|
simplbda |
⊢ ( ( 𝑞 Fn Word ( 𝐸 ∪ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) |
| 245 |
242 244
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) |
| 246 |
|
xp2nd |
⊢ ( ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ { 𝑓 } ) |
| 247 |
245 246
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ { 𝑓 } ) |
| 248 |
247
|
elsnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) = 𝑓 ) |
| 249 |
248
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) = 𝑓 ) |
| 250 |
249
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · 𝑓 ) ) |
| 251 |
240 250
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · 𝑓 ) ) |
| 252 |
251
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) · 𝑓 ) ) ) |
| 253 |
233 252
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) = ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) |
| 254 |
253
|
mpteq2dva |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) ) = ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) ) |
| 255 |
|
fveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ 𝑤 ) ) |
| 256 |
|
oveq2 |
⊢ ( 𝑣 = 𝑤 → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) |
| 257 |
255 256
|
oveq12d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 258 |
257
|
cbvmptv |
⊢ ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) = ( 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) |
| 259 |
254 258
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) ) = ( 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) |
| 260 |
259
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 261 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 𝑅 ∈ Ring ) |
| 262 |
19
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V ) |
| 263 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Grp ) |
| 264 |
191
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 265 |
264 224
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺 ‘ 𝑣 ) ∈ ℤ ) |
| 266 |
1 24 263 265 227
|
mulgcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ∈ 𝐵 ) |
| 267 |
50
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ↦ ( 𝐺 ‘ 𝑣 ) ) finSupp 0 ) |
| 268 |
|
0zd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 0 ∈ ℤ ) |
| 269 |
267 223 268
|
fmptssfisupp |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( 𝐺 ‘ 𝑣 ) ) finSupp 0 ) |
| 270 |
58
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑦 ∈ 𝐵 ) → ( 0 ( .g ‘ 𝑅 ) 𝑦 ) = 0 ) |
| 271 |
60
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 0 ∈ V ) |
| 272 |
269 270 265 227 271
|
fsuppssov1 |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) finSupp 0 ) |
| 273 |
1 3 2 261 262 230 266 272
|
gsummulc1 |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) ) ) = ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) |
| 274 |
273
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) · 𝑓 ) ) ) = ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) |
| 275 |
161
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → 𝑅 ∈ CMnd ) |
| 276 |
89
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝐺 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 277 |
162
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → Word ( 𝐸 ∪ 𝐹 ) ∈ V ) |
| 278 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 0 ∈ ℤ ) |
| 279 |
139
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 280 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) |
| 281 |
280
|
eldifad |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) |
| 282 |
279 281
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 283 |
|
eldif |
⊢ ( 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ↔ ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∧ ¬ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) |
| 284 |
|
nfv |
⊢ Ⅎ 𝑢 ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 285 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) ∧ 𝑢 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ∈ V ) |
| 286 |
|
eqid |
⊢ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) |
| 287 |
284 285 286
|
fnmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ) |
| 288 |
287
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ) |
| 289 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 290 |
|
2fveq3 |
⊢ ( 𝑢 = 𝑣 → ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) = ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 291 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 292 |
|
fvexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ V ) |
| 293 |
286 290 291 292
|
fvmptd3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) = ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 294 |
293
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) = ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 295 |
241
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑞 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 296 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) |
| 297 |
295 296 244
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) |
| 298 |
297 246
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ { 𝑓 } ) |
| 299 |
294 298
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } ) |
| 300 |
288 289 299
|
elpreimad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) |
| 301 |
300
|
stoic1a |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ ¬ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ¬ 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 302 |
301
|
anasss |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∧ ¬ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ¬ 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 303 |
283 302
|
sylan2b |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ¬ 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 304 |
282 303
|
eldifd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ ( Word ( 𝐸 ∪ 𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) |
| 305 |
276 277 278 304
|
fvdifsupp |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( 𝐺 ‘ 𝑣 ) = 0 ) |
| 306 |
305
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) |
| 307 |
172
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 308 |
179
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → Word ( 𝐸 ∪ 𝐹 ) ⊆ Word 𝐵 ) |
| 309 |
223 308
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word 𝐵 ) |
| 310 |
309
|
ssdifssd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ⊆ Word 𝐵 ) |
| 311 |
310
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ Word 𝐵 ) |
| 312 |
183
|
gsumwcl |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ∈ 𝐵 ) |
| 313 |
307 311 312
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ∈ 𝐵 ) |
| 314 |
1 3 24
|
mulg0 |
⊢ ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ∈ 𝐵 → ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ) |
| 315 |
313 314
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( 0 ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ) |
| 316 |
306 315
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ) |
| 317 |
316
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ∀ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ) |
| 318 |
257
|
eqeq1d |
⊢ ( 𝑣 = 𝑤 → ( ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ↔ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) ) |
| 319 |
318
|
cbvralvw |
⊢ ( ∀ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ↔ ∀ 𝑤 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 320 |
|
2fveq3 |
⊢ ( 𝑢 = 𝑤 → ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) = ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) |
| 321 |
320
|
cbvmptv |
⊢ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) = ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) |
| 322 |
321 215
|
eqtr4i |
⊢ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) = ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 323 |
322
|
cnveqi |
⊢ ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) = ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 324 |
323
|
imaeq1i |
⊢ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) = ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) |
| 325 |
324
|
difeq2i |
⊢ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) = ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ) |
| 326 |
325
|
raleqi |
⊢ ( ∀ 𝑤 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ↔ ∀ 𝑤 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 327 |
319 326
|
bitri |
⊢ ( ∀ 𝑣 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ↔ ∀ 𝑤 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 328 |
317 327
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ∀ 𝑤 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 329 |
328
|
r19.21bi |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) |
| 330 |
189
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝐺 supp 0 ) ∈ Fin ) |
| 331 |
330
|
cnvimamptfin |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ∈ Fin ) |
| 332 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Grp ) |
| 333 |
191
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ℤ ) |
| 334 |
223
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 335 |
333 334
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺 ‘ 𝑤 ) ∈ ℤ ) |
| 336 |
172
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 337 |
309
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑤 ∈ Word 𝐵 ) |
| 338 |
336 337 184
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 ) |
| 339 |
1 24 332 335 338
|
mulgcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 ) |
| 340 |
241
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑞 Fn Word ( 𝐸 ∪ 𝐹 ) ) |
| 341 |
198
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸 ∪ 𝐹 ) ) |
| 342 |
|
nfv |
⊢ Ⅎ 𝑤 ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) |
| 343 |
|
fvexd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ∈ V ) |
| 344 |
342 343 321
|
fnmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ) |
| 345 |
|
elpreima |
⊢ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) Fn ( 𝐺 supp 0 ) → ( 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ↔ ( 𝑣 ∈ ( 𝐺 supp 0 ) ∧ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } ) ) ) |
| 346 |
345
|
simprbda |
⊢ ( ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 347 |
344 346
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) ) |
| 348 |
341 347
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 349 |
32
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑞 : Word ( 𝐸 ∪ 𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) |
| 350 |
349 348
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × 𝐹 ) ) |
| 351 |
|
1st2nd2 |
⊢ ( ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × 𝐹 ) → ( 𝑞 ‘ 𝑣 ) = 〈 ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) , ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) 〉 ) |
| 352 |
350 351
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑞 ‘ 𝑣 ) = 〈 ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) , ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) 〉 ) |
| 353 |
350 143
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ 𝐸 ) |
| 354 |
347 293
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) = ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) |
| 355 |
345
|
simplbda |
⊢ ( ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } ) |
| 356 |
344 355
|
sylancom |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } ) |
| 357 |
354 356
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ∈ { 𝑓 } ) |
| 358 |
353 357
|
opelxpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 〈 ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) , ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) 〉 ∈ ( 𝐸 × { 𝑓 } ) ) |
| 359 |
352 358
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑞 ‘ 𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) |
| 360 |
340 348 359
|
elpreimad |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) ∧ 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) |
| 361 |
360
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑣 ∈ ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) → 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ) |
| 362 |
361
|
ssrdv |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑢 ) ) ) “ { 𝑓 } ) ⊆ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) |
| 363 |
324 362
|
eqsstrrid |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ⊆ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) |
| 364 |
1 3 275 262 329 331 339 363
|
gsummptres2 |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 365 |
364
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( 𝑅 Σg ( 𝑤 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 366 |
260 274 365
|
3eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ∧ 𝑓 ∈ 𝐹 ) → ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) = ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) |
| 367 |
366
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) = ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) |
| 368 |
367
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ◡ ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞 ‘ 𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺 ‘ 𝑤 ) ( .g ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) ) |
| 369 |
218 219 368
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) |
| 370 |
159 369
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ( ( 𝑓 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) ) finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( ◡ 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺 ‘ 𝑣 ) ( .g ‘ 𝑅 ) ( 1st ‘ ( 𝑞 ‘ 𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) ) |
| 371 |
65 79 370
|
rspcedvd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) → ∃ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) |
| 372 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑞 ‘ 𝑤 ) → ( 1st ‘ 𝑎 ) = ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) ) |
| 373 |
|
fveq2 |
⊢ ( 𝑎 = ( 𝑞 ‘ 𝑤 ) → ( 2nd ‘ 𝑎 ) = ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) |
| 374 |
372 373
|
oveq12d |
⊢ ( 𝑎 = ( 𝑞 ‘ 𝑤 ) → ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑎 ) ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) |
| 375 |
374
|
eqeq2d |
⊢ ( 𝑎 = ( 𝑞 ‘ 𝑤 ) → ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑎 ) ) ↔ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) ) |
| 376 |
|
vex |
⊢ 𝑒 ∈ V |
| 377 |
|
vex |
⊢ 𝑓 ∈ V |
| 378 |
376 377
|
op1std |
⊢ ( 𝑎 = 〈 𝑒 , 𝑓 〉 → ( 1st ‘ 𝑎 ) = 𝑒 ) |
| 379 |
376 377
|
op2ndd |
⊢ ( 𝑎 = 〈 𝑒 , 𝑓 〉 → ( 2nd ‘ 𝑎 ) = 𝑓 ) |
| 380 |
378 379
|
oveq12d |
⊢ ( 𝑎 = 〈 𝑒 , 𝑓 〉 → ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑎 ) ) = ( 𝑒 · 𝑓 ) ) |
| 381 |
380
|
eqeq2d |
⊢ ( 𝑎 = 〈 𝑒 , 𝑓 〉 → ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑎 ) ) ↔ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) ) |
| 382 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → 𝑒 ∈ 𝐸 ) |
| 383 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → 𝑓 ∈ 𝐹 ) |
| 384 |
382 383
|
opelxpd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → 〈 𝑒 , 𝑓 〉 ∈ ( 𝐸 × 𝐹 ) ) |
| 385 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) |
| 386 |
381 384 385
|
rspcedvdw |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) ∧ 𝑒 ∈ 𝐸 ) ∧ 𝑓 ∈ 𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → ∃ 𝑎 ∈ ( 𝐸 × 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑎 ) ) ) |
| 387 |
169 2
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 388 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd ) |
| 389 |
169
|
subrgsubm |
⊢ ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 390 |
6 389
|
syl |
⊢ ( 𝜑 → 𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 391 |
390
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 392 |
169
|
subrgsubm |
⊢ ( 𝐹 ∈ ( SubRing ‘ 𝑅 ) → 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 393 |
7 392
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 394 |
393
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 395 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) |
| 396 |
387 388 391 394 395
|
gsumwun |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ∃ 𝑒 ∈ 𝐸 ∃ 𝑓 ∈ 𝐹 ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) |
| 397 |
386 396
|
r19.29vva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ) → ∃ 𝑎 ∈ ( 𝐸 × 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ 𝑎 ) · ( 2nd ‘ 𝑎 ) ) ) |
| 398 |
375 30 27 397
|
ac6mapd |
⊢ ( 𝜑 → ∃ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸 ∪ 𝐹 ) ) ∀ 𝑤 ∈ Word ( 𝐸 ∪ 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞 ‘ 𝑤 ) ) · ( 2nd ‘ ( 𝑞 ‘ 𝑤 ) ) ) ) |
| 399 |
371 398
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( 𝐸 ↑m 𝐹 ) ( 𝑝 finSupp 0 ∧ 𝑋 = ( 𝑅 Σg ( 𝑓 ∈ 𝐹 ↦ ( ( 𝑝 ‘ 𝑓 ) · 𝑓 ) ) ) ) ) |