Metamath Proof Explorer


Theorem elrgspnsubrunlem2

Description: Lemma for elrgspnsubrun , second direction. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elrgspnsubrun.b 𝐵 = ( Base ‘ 𝑅 )
elrgspnsubrun.t · = ( .r𝑅 )
elrgspnsubrun.z 0 = ( 0g𝑅 )
elrgspnsubrun.n 𝑁 = ( RingSpan ‘ 𝑅 )
elrgspnsubrun.r ( 𝜑𝑅 ∈ CRing )
elrgspnsubrun.e ( 𝜑𝐸 ∈ ( SubRing ‘ 𝑅 ) )
elrgspnsubrun.f ( 𝜑𝐹 ∈ ( SubRing ‘ 𝑅 ) )
elrgspnsubrunlem2.x ( 𝜑𝑋𝐵 )
elrgspnsubrunlem2.1 ( 𝜑𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
elrgspnsubrunlem2.2 ( 𝜑𝐺 finSupp 0 )
elrgspnsubrunlem2.3 ( 𝜑𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸𝐹 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
Assertion elrgspnsubrunlem2 ( 𝜑 → ∃ 𝑝 ∈ ( 𝐸m 𝐹 ) ( 𝑝 finSupp 0𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 elrgspnsubrun.b 𝐵 = ( Base ‘ 𝑅 )
2 elrgspnsubrun.t · = ( .r𝑅 )
3 elrgspnsubrun.z 0 = ( 0g𝑅 )
4 elrgspnsubrun.n 𝑁 = ( RingSpan ‘ 𝑅 )
5 elrgspnsubrun.r ( 𝜑𝑅 ∈ CRing )
6 elrgspnsubrun.e ( 𝜑𝐸 ∈ ( SubRing ‘ 𝑅 ) )
7 elrgspnsubrun.f ( 𝜑𝐹 ∈ ( SubRing ‘ 𝑅 ) )
8 elrgspnsubrunlem2.x ( 𝜑𝑋𝐵 )
9 elrgspnsubrunlem2.1 ( 𝜑𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
10 elrgspnsubrunlem2.2 ( 𝜑𝐺 finSupp 0 )
11 elrgspnsubrunlem2.3 ( 𝜑𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸𝐹 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
12 6 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → 𝐸 ∈ ( SubRing ‘ 𝑅 ) )
13 7 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) )
14 5 crngringd ( 𝜑𝑅 ∈ Ring )
15 14 ringabld ( 𝜑𝑅 ∈ Abel )
16 15 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → 𝑅 ∈ Abel )
17 vex 𝑞 ∈ V
18 17 cnvex 𝑞 ∈ V
19 18 imaex ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V
20 19 a1i ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V )
21 subrgsubg ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) )
22 6 21 syl ( 𝜑𝐸 ∈ ( SubGrp ‘ 𝑅 ) )
23 22 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) )
24 eqid ( .g𝑅 ) = ( .g𝑅 )
25 5 crnggrpd ( 𝜑𝑅 ∈ Grp )
26 25 ad4antr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Grp )
27 6 7 xpexd ( 𝜑 → ( 𝐸 × 𝐹 ) ∈ V )
28 6 7 unexd ( 𝜑 → ( 𝐸𝐹 ) ∈ V )
29 wrdexg ( ( 𝐸𝐹 ) ∈ V → Word ( 𝐸𝐹 ) ∈ V )
30 28 29 syl ( 𝜑 → Word ( 𝐸𝐹 ) ∈ V )
31 27 30 elmapd ( 𝜑 → ( 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ↔ 𝑞 : Word ( 𝐸𝐹 ) ⟶ ( 𝐸 × 𝐹 ) ) )
32 31 biimpa ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → 𝑞 : Word ( 𝐸𝐹 ) ⟶ ( 𝐸 × 𝐹 ) )
33 32 ffund ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → Fun 𝑞 )
34 33 ad3antrrr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → Fun 𝑞 )
35 fvimacnvi ( ( Fun 𝑞𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) )
36 34 35 sylancom ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) )
37 xp1st ( ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐸 )
38 36 37 syl ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐸 )
39 23 adantr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐸 ∈ ( SubGrp ‘ 𝑅 ) )
40 9 ad4antr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
41 cnvimass ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ dom 𝑞
42 32 fdmd ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → dom 𝑞 = Word ( 𝐸𝐹 ) )
43 42 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → dom 𝑞 = Word ( 𝐸𝐹 ) )
44 41 43 sseqtrid ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸𝐹 ) )
45 44 sselda ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸𝐹 ) )
46 40 45 ffvelcdmd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺𝑣 ) ∈ ℤ )
47 1 24 26 38 39 46 subgmulgcld ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ∈ 𝐸 )
48 47 fmpttd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) : ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⟶ 𝐸 )
49 9 feqmptd ( 𝜑𝐺 = ( 𝑣 ∈ Word ( 𝐸𝐹 ) ↦ ( 𝐺𝑣 ) ) )
50 49 10 eqbrtrrd ( 𝜑 → ( 𝑣 ∈ Word ( 𝐸𝐹 ) ↦ ( 𝐺𝑣 ) ) finSupp 0 )
51 50 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ Word ( 𝐸𝐹 ) ↦ ( 𝐺𝑣 ) ) finSupp 0 )
52 0zd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → 0 ∈ ℤ )
53 51 44 52 fmptssfisupp ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( 𝐺𝑣 ) ) finSupp 0 )
54 1 subrgss ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸𝐵 )
55 6 54 syl ( 𝜑𝐸𝐵 )
56 55 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → 𝐸𝐵 )
57 56 sselda ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑦𝐸 ) → 𝑦𝐵 )
58 1 3 24 mulg0 ( 𝑦𝐵 → ( 0 ( .g𝑅 ) 𝑦 ) = 0 )
59 57 58 syl ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑦𝐸 ) → ( 0 ( .g𝑅 ) 𝑦 ) = 0 )
60 3 fvexi 0 ∈ V
61 60 a1i ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → 0 ∈ V )
62 53 59 46 38 61 fsuppssov1 ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) finSupp 0 )
63 3 16 20 23 48 62 gsumsubgcl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ∈ 𝐸 )
64 63 fmpttd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) : 𝐹𝐸 )
65 12 13 64 elmapdd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ∈ ( 𝐸m 𝐹 ) )
66 breq1 ( 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) → ( 𝑝 finSupp 0 ↔ ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) finSupp 0 ) )
67 66 adantl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) → ( 𝑝 finSupp 0 ↔ ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) finSupp 0 ) )
68 nfv 𝑓 ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) )
69 nfmpt1 𝑓 ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) )
70 69 nfeq2 𝑓 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) )
71 68 70 nfan 𝑓 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) )
72 simpr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) → 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) )
73 ovexd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ∈ V )
74 72 73 fvmpt2d ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑝𝑓 ) = ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) )
75 74 oveq1d ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) ∧ 𝑓𝐹 ) → ( ( 𝑝𝑓 ) · 𝑓 ) = ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) )
76 71 75 mpteq2da ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) → ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) = ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) )
77 76 oveq2d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) → ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) ) = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) ) )
78 77 eqeq2d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) → ( 𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) ) ↔ 𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) )
79 67 78 anbi12d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑝 = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) ) → ( ( 𝑝 finSupp 0𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) ) ) ↔ ( ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) finSupp 0𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) ) )
80 60 a1i ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → 0 ∈ V )
81 64 ffund ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → Fun ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) )
82 33 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → Fun 𝑞 )
83 10 fsuppimpd ( 𝜑 → ( 𝐺 supp 0 ) ∈ Fin )
84 83 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝐺 supp 0 ) ∈ Fin )
85 imafi ( ( Fun 𝑞 ∧ ( 𝐺 supp 0 ) ∈ Fin ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin )
86 82 84 85 syl2anc ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin )
87 rnfi ( ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin → ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin )
88 86 87 syl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ∈ Fin )
89 9 ffnd ( 𝜑𝐺 Fn Word ( 𝐸𝐹 ) )
90 89 ad4antr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 Fn Word ( 𝐸𝐹 ) )
91 30 ad4antr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → Word ( 𝐸𝐹 ) ∈ V )
92 0zd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 0 ∈ ℤ )
93 snssi ( 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
94 93 adantl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
95 xpss2 ( { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
96 ssun2 ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( ( ( 𝐸 ∖ dom ( 𝑞 “ ( 𝐺 supp 0 ) ) ) × 𝐹 ) ∪ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
97 difxp ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) = ( ( ( 𝐸 ∖ dom ( 𝑞 “ ( 𝐺 supp 0 ) ) ) × 𝐹 ) ∪ ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
98 96 97 sseqtrri ( 𝐸 × ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
99 95 98 sstrdi ( { 𝑓 } ⊆ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
100 94 99 syl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
101 imassrn ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ran 𝑞
102 32 frnd ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ran 𝑞 ⊆ ( 𝐸 × 𝐹 ) )
103 102 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ran 𝑞 ⊆ ( 𝐸 × 𝐹 ) )
104 101 103 sstrid ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( 𝐸 × 𝐹 ) )
105 relxp Rel ( 𝐸 × 𝐹 )
106 relss ( ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( 𝐸 × 𝐹 ) → ( Rel ( 𝐸 × 𝐹 ) → Rel ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
107 105 106 mpi ( ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( 𝐸 × 𝐹 ) → Rel ( 𝑞 “ ( 𝐺 supp 0 ) ) )
108 relssdmrn ( Rel ( 𝑞 “ ( 𝐺 supp 0 ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
109 104 107 108 3syl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐺 supp 0 ) ) ⊆ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
110 109 sscond ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝐸 × 𝐹 ) ∖ ( dom ( 𝑞 “ ( 𝐺 supp 0 ) ) × ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
111 100 110 sstrd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
112 imass2 ( ( 𝐸 × { 𝑓 } ) ⊆ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
113 111 112 syl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
114 113 adantlr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
115 82 adantr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → Fun 𝑞 )
116 difpreima ( Fun 𝑞 → ( 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) = ( ( 𝑞 “ ( 𝐸 × 𝐹 ) ) ∖ ( 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
117 115 116 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) = ( ( 𝑞 “ ( 𝐸 × 𝐹 ) ) ∖ ( 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) )
118 cnvimass ( 𝑞 “ ( 𝐸 × 𝐹 ) ) ⊆ dom 𝑞
119 42 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → dom 𝑞 = Word ( 𝐸𝐹 ) )
120 118 119 sseqtrid ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐸 × 𝐹 ) ) ⊆ Word ( 𝐸𝐹 ) )
121 suppssdm ( 𝐺 supp 0 ) ⊆ dom 𝐺
122 9 fdmd ( 𝜑 → dom 𝐺 = Word ( 𝐸𝐹 ) )
123 122 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → dom 𝐺 = Word ( 𝐸𝐹 ) )
124 121 123 sseqtrid ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸𝐹 ) )
125 124 119 sseqtrrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 supp 0 ) ⊆ dom 𝑞 )
126 sseqin2 ( ( 𝐺 supp 0 ) ⊆ dom 𝑞 ↔ ( dom 𝑞 ∩ ( 𝐺 supp 0 ) ) = ( 𝐺 supp 0 ) )
127 126 biimpi ( ( 𝐺 supp 0 ) ⊆ dom 𝑞 → ( dom 𝑞 ∩ ( 𝐺 supp 0 ) ) = ( 𝐺 supp 0 ) )
128 dminss ( dom 𝑞 ∩ ( 𝐺 supp 0 ) ) ⊆ ( 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) )
129 127 128 eqsstrrdi ( ( 𝐺 supp 0 ) ⊆ dom 𝑞 → ( 𝐺 supp 0 ) ⊆ ( 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
130 125 129 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝐺 supp 0 ) ⊆ ( 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) )
131 120 130 ssdif2d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( ( 𝑞 “ ( 𝐸 × 𝐹 ) ) ∖ ( 𝑞 “ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) )
132 117 131 eqsstrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( ( 𝐸 × 𝐹 ) ∖ ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ⊆ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) )
133 114 132 sstrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) )
134 133 sselda ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) )
135 90 91 92 134 fvdifsupp ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺𝑣 ) = 0 )
136 135 oveq1d ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) = ( 0 ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) )
137 55 ad4antr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐸𝐵 )
138 32 ad3antrrr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑞 : Word ( 𝐸𝐹 ) ⟶ ( 𝐸 × 𝐹 ) )
139 41 42 sseqtrid ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸𝐹 ) )
140 139 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸𝐹 ) )
141 140 sselda ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸𝐹 ) )
142 138 141 ffvelcdmd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × 𝐹 ) )
143 xp1st ( ( 𝑞𝑣 ) ∈ ( 𝐸 × 𝐹 ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐸 )
144 142 143 syl ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐸 )
145 137 144 sseldd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐵 )
146 1 3 24 mulg0 ( ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐵 → ( 0 ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) = 0 )
147 145 146 syl ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 0 ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) = 0 )
148 136 147 eqtrd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) = 0 )
149 148 mpteq2dva ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) = ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) )
150 149 oveq2d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) = ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) )
151 25 grpmndd ( 𝜑𝑅 ∈ Mnd )
152 151 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → 𝑅 ∈ Mnd )
153 19 a1i ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V )
154 3 gsumz ( ( 𝑅 ∈ Mnd ∧ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) = 0 )
155 152 153 154 syl2anc ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ 0 ) ) = 0 )
156 150 155 eqtrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓 ∈ ( 𝐹 ∖ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) ) ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) = 0 )
157 156 13 suppss2 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) supp 0 ) ⊆ ran ( 𝑞 “ ( 𝐺 supp 0 ) ) )
158 88 157 ssfid ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) supp 0 ) ∈ Fin )
159 65 80 81 158 isfsuppd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) finSupp 0 )
160 15 ablcmnd ( 𝜑𝑅 ∈ CMnd )
161 160 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → 𝑅 ∈ CMnd )
162 30 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → Word ( 𝐸𝐹 ) ∈ V )
163 89 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝐺 Fn Word ( 𝐸𝐹 ) )
164 162 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → Word ( 𝐸𝐹 ) ∈ V )
165 0zd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 0 ∈ ℤ )
166 simpr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) )
167 163 164 165 166 fvdifsupp ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( 𝐺𝑤 ) = 0 )
168 167 oveq1d ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = ( 0 ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) )
169 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
170 169 crngmgp ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
171 5 170 syl ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
172 171 cmnmndd ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
173 172 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
174 1 subrgss ( 𝐹 ∈ ( SubRing ‘ 𝑅 ) → 𝐹𝐵 )
175 7 174 syl ( 𝜑𝐹𝐵 )
176 55 175 unssd ( 𝜑 → ( 𝐸𝐹 ) ⊆ 𝐵 )
177 sswrd ( ( 𝐸𝐹 ) ⊆ 𝐵 → Word ( 𝐸𝐹 ) ⊆ Word 𝐵 )
178 176 177 syl ( 𝜑 → Word ( 𝐸𝐹 ) ⊆ Word 𝐵 )
179 178 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → Word ( 𝐸𝐹 ) ⊆ Word 𝐵 )
180 179 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → Word ( 𝐸𝐹 ) ⊆ Word 𝐵 )
181 166 eldifad ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝑤 ∈ Word ( 𝐸𝐹 ) )
182 180 181 sseldd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → 𝑤 ∈ Word 𝐵 )
183 169 1 mgpbas 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
184 183 gsumwcl ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑤 ∈ Word 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 )
185 173 182 184 syl2anc ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 )
186 1 3 24 mulg0 ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 → ( 0 ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
187 185 186 syl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( 0 ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
188 168 187 eqtrd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) ) → ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
189 83 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝐺 supp 0 ) ∈ Fin )
190 25 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸𝐹 ) ) → 𝑅 ∈ Grp )
191 9 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → 𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
192 191 ffvelcdmda ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸𝐹 ) ) → ( 𝐺𝑤 ) ∈ ℤ )
193 172 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸𝐹 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
194 179 sselda ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸𝐹 ) ) → 𝑤 ∈ Word 𝐵 )
195 193 194 184 syl2anc ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸𝐹 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 )
196 1 24 190 192 195 mulgcld ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ Word ( 𝐸𝐹 ) ) → ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 )
197 121 122 sseqtrid ( 𝜑 → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸𝐹 ) )
198 197 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸𝐹 ) )
199 1 3 161 162 188 189 196 198 gsummptres2 ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸𝐹 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
200 7 adantr ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → 𝐹 ∈ ( SubRing ‘ 𝑅 ) )
201 25 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑅 ∈ Grp )
202 9 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
203 198 sselda ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑤 ∈ Word ( 𝐸𝐹 ) )
204 202 203 ffvelcdmd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 𝐺𝑤 ) ∈ ℤ )
205 172 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
206 198 179 sstrd ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝐺 supp 0 ) ⊆ Word 𝐵 )
207 206 sselda ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑤 ∈ Word 𝐵 )
208 205 207 184 syl2anc ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 )
209 1 24 201 204 208 mulgcld ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 )
210 32 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → 𝑞 : Word ( 𝐸𝐹 ) ⟶ ( 𝐸 × 𝐹 ) )
211 210 203 ffvelcdmd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 𝑞𝑤 ) ∈ ( 𝐸 × 𝐹 ) )
212 xp2nd ( ( 𝑞𝑤 ) ∈ ( 𝐸 × 𝐹 ) → ( 2nd ‘ ( 𝑞𝑤 ) ) ∈ 𝐹 )
213 211 212 syl ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞𝑤 ) ) ∈ 𝐹 )
214 2fveq3 ( 𝑣 = 𝑤 → ( 2nd ‘ ( 𝑞𝑣 ) ) = ( 2nd ‘ ( 𝑞𝑤 ) ) )
215 214 cbvmptv ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) = ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑤 ) ) )
216 1 3 161 189 200 209 213 215 gsummpt2co ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) )
217 199 216 eqtrd ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸𝐹 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) )
218 217 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸𝐹 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) )
219 11 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → 𝑋 = ( 𝑅 Σg ( 𝑤 ∈ Word ( 𝐸𝐹 ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
220 14 ad4antr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Ring )
221 55 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐸𝐵 )
222 32 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑞 : Word ( 𝐸𝐹 ) ⟶ ( 𝐸 × 𝐹 ) )
223 139 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸𝐹 ) )
224 223 sselda ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸𝐹 ) )
225 222 224 ffvelcdmd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × 𝐹 ) )
226 225 143 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐸 )
227 221 226 sseldd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐵 )
228 227 adantllr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐵 )
229 200 174 syl ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → 𝐹𝐵 )
230 229 sselda ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → 𝑓𝐵 )
231 230 ad4ant13 ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑓𝐵 )
232 1 24 2 mulgass2 ( ( 𝑅 ∈ Ring ∧ ( ( 𝐺𝑣 ) ∈ ℤ ∧ ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐵𝑓𝐵 ) ) → ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) = ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( 1st ‘ ( 𝑞𝑣 ) ) · 𝑓 ) ) )
233 220 46 228 231 232 syl13anc ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) = ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( 1st ‘ ( 𝑞𝑣 ) ) · 𝑓 ) ) )
234 oveq2 ( 𝑤 = 𝑣 → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) )
235 2fveq3 ( 𝑤 = 𝑣 → ( 1st ‘ ( 𝑞𝑤 ) ) = ( 1st ‘ ( 𝑞𝑣 ) ) )
236 2fveq3 ( 𝑤 = 𝑣 → ( 2nd ‘ ( 𝑞𝑤 ) ) = ( 2nd ‘ ( 𝑞𝑣 ) ) )
237 235 236 oveq12d ( 𝑤 = 𝑣 → ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) = ( ( 1st ‘ ( 𝑞𝑣 ) ) · ( 2nd ‘ ( 𝑞𝑣 ) ) ) )
238 234 237 eqeq12d ( 𝑤 = 𝑣 → ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ↔ ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( 1st ‘ ( 𝑞𝑣 ) ) · ( 2nd ‘ ( 𝑞𝑣 ) ) ) ) )
239 simpllr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) )
240 238 239 45 rspcdva ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( 1st ‘ ( 𝑞𝑣 ) ) · ( 2nd ‘ ( 𝑞𝑣 ) ) ) )
241 32 ffnd ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) → 𝑞 Fn Word ( 𝐸𝐹 ) )
242 241 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑞 Fn Word ( 𝐸𝐹 ) )
243 elpreima ( 𝑞 Fn Word ( 𝐸𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↔ ( 𝑣 ∈ Word ( 𝐸𝐹 ) ∧ ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) ) ) )
244 243 simplbda ( ( 𝑞 Fn Word ( 𝐸𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) )
245 242 244 sylancom ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) )
246 xp2nd ( ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) → ( 2nd ‘ ( 𝑞𝑣 ) ) ∈ { 𝑓 } )
247 245 246 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 2nd ‘ ( 𝑞𝑣 ) ) ∈ { 𝑓 } )
248 247 elsnd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 2nd ‘ ( 𝑞𝑣 ) ) = 𝑓 )
249 248 adantllr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 2nd ‘ ( 𝑞𝑣 ) ) = 𝑓 )
250 249 oveq2d ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 1st ‘ ( 𝑞𝑣 ) ) · ( 2nd ‘ ( 𝑞𝑣 ) ) ) = ( ( 1st ‘ ( 𝑞𝑣 ) ) · 𝑓 ) )
251 240 250 eqtrd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( 1st ‘ ( 𝑞𝑣 ) ) · 𝑓 ) )
252 251 oveq2d ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( 1st ‘ ( 𝑞𝑣 ) ) · 𝑓 ) ) )
253 233 252 eqtr4d ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) = ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) )
254 253 mpteq2dva ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) ) = ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) )
255 fveq2 ( 𝑣 = 𝑤 → ( 𝐺𝑣 ) = ( 𝐺𝑤 ) )
256 oveq2 ( 𝑣 = 𝑤 → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) = ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) )
257 255 256 oveq12d ( 𝑣 = 𝑤 → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) )
258 257 cbvmptv ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) ) = ( 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) )
259 254 258 eqtrdi ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) ) = ( 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) )
260 259 oveq2d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
261 14 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → 𝑅 ∈ Ring )
262 19 a1i ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∈ V )
263 25 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Grp )
264 191 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
265 264 224 ffvelcdmd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺𝑣 ) ∈ ℤ )
266 1 24 263 265 227 mulgcld ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ∈ 𝐵 )
267 50 ad2antrr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ Word ( 𝐸𝐹 ) ↦ ( 𝐺𝑣 ) ) finSupp 0 )
268 0zd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → 0 ∈ ℤ )
269 267 223 268 fmptssfisupp ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( 𝐺𝑣 ) ) finSupp 0 )
270 58 adantl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑦𝐵 ) → ( 0 ( .g𝑅 ) 𝑦 ) = 0 )
271 60 a1i ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → 0 ∈ V )
272 269 270 265 227 271 fsuppssov1 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) finSupp 0 )
273 1 3 2 261 262 230 266 272 gsummulc1 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) ) ) = ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) )
274 273 adantlr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) · 𝑓 ) ) ) = ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) )
275 161 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → 𝑅 ∈ CMnd )
276 89 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝐺 Fn Word ( 𝐸𝐹 ) )
277 162 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → Word ( 𝐸𝐹 ) ∈ V )
278 0zd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 0 ∈ ℤ )
279 139 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word ( 𝐸𝐹 ) )
280 simpr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) )
281 280 eldifad ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) )
282 279 281 sseldd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ Word ( 𝐸𝐹 ) )
283 eldif ( 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ↔ ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∧ ¬ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) )
284 nfv 𝑢 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) )
285 fvexd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) ∧ 𝑢 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞𝑢 ) ) ∈ V )
286 eqid ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) = ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) )
287 284 285 286 fnmptd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) Fn ( 𝐺 supp 0 ) )
288 287 adantlr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) Fn ( 𝐺 supp 0 ) )
289 simpr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) )
290 2fveq3 ( 𝑢 = 𝑣 → ( 2nd ‘ ( 𝑞𝑢 ) ) = ( 2nd ‘ ( 𝑞𝑣 ) ) )
291 simpr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) )
292 fvexd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞𝑣 ) ) ∈ V )
293 286 290 291 292 fvmptd3 ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) = ( 2nd ‘ ( 𝑞𝑣 ) ) )
294 293 adantlr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) = ( 2nd ‘ ( 𝑞𝑣 ) ) )
295 241 ad3antrrr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑞 Fn Word ( 𝐸𝐹 ) )
296 simplr ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) )
297 295 296 244 syl2anc ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) )
298 297 246 syl ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞𝑣 ) ) ∈ { 𝑓 } )
299 294 298 eqeltrd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } )
300 288 289 299 elpreimad ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ 𝑣 ∈ ( 𝐺 supp 0 ) ) → 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) )
301 300 stoic1a ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) ∧ ¬ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ¬ 𝑣 ∈ ( 𝐺 supp 0 ) )
302 301 anasss ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∧ ¬ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ¬ 𝑣 ∈ ( 𝐺 supp 0 ) )
303 283 302 sylan2b ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ¬ 𝑣 ∈ ( 𝐺 supp 0 ) )
304 282 303 eldifd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ ( Word ( 𝐸𝐹 ) ∖ ( 𝐺 supp 0 ) ) )
305 276 277 278 304 fvdifsupp ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( 𝐺𝑣 ) = 0 )
306 305 oveq1d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = ( 0 ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) )
307 172 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
308 179 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → Word ( 𝐸𝐹 ) ⊆ Word 𝐵 )
309 223 308 sstrd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ⊆ Word 𝐵 )
310 309 ssdifssd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ⊆ Word 𝐵 )
311 310 sselda ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → 𝑣 ∈ Word 𝐵 )
312 183 gsumwcl ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝑣 ∈ Word 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ∈ 𝐵 )
313 307 311 312 syl2anc ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ∈ 𝐵 )
314 1 3 24 mulg0 ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ∈ 𝐵 → ( 0 ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 )
315 313 314 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( 0 ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 )
316 306 315 eqtrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ) → ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 )
317 316 ralrimiva ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ∀ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 )
318 257 eqeq1d ( 𝑣 = 𝑤 → ( ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ↔ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ) )
319 318 cbvralvw ( ∀ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ↔ ∀ 𝑤 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
320 2fveq3 ( 𝑢 = 𝑤 → ( 2nd ‘ ( 𝑞𝑢 ) ) = ( 2nd ‘ ( 𝑞𝑤 ) ) )
321 320 cbvmptv ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) = ( 𝑤 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑤 ) ) )
322 321 215 eqtr4i ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) = ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) )
323 322 cnveqi ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) = ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) )
324 323 imaeq1i ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) = ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } )
325 324 difeq2i ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) = ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) )
326 325 raleqi ( ∀ 𝑤 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 ↔ ∀ 𝑤 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
327 319 326 bitri ( ∀ 𝑣 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑣 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑣 ) ) = 0 ↔ ∀ 𝑤 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
328 317 327 sylib ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ∀ 𝑤 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ) ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
329 328 r19.21bi ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ∖ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ) ) → ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) = 0 )
330 189 adantr ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝐺 supp 0 ) ∈ Fin )
331 330 cnvimamptfin ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ∈ Fin )
332 25 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑅 ∈ Grp )
333 191 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝐺 : Word ( 𝐸𝐹 ) ⟶ ℤ )
334 223 sselda ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑤 ∈ Word ( 𝐸𝐹 ) )
335 333 334 ffvelcdmd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( 𝐺𝑤 ) ∈ ℤ )
336 172 ad3antrrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd )
337 309 sselda ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → 𝑤 ∈ Word 𝐵 )
338 336 337 184 syl2anc ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ∈ 𝐵 )
339 1 24 332 335 338 mulgcld ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) → ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ∈ 𝐵 )
340 241 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑞 Fn Word ( 𝐸𝐹 ) )
341 198 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝐺 supp 0 ) ⊆ Word ( 𝐸𝐹 ) )
342 nfv 𝑤 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) )
343 fvexd ( ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) ∧ 𝑤 ∈ ( 𝐺 supp 0 ) ) → ( 2nd ‘ ( 𝑞𝑤 ) ) ∈ V )
344 342 343 321 fnmptd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) Fn ( 𝐺 supp 0 ) )
345 elpreima ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) Fn ( 𝐺 supp 0 ) → ( 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ↔ ( 𝑣 ∈ ( 𝐺 supp 0 ) ∧ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } ) ) )
346 345 simprbda ( ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) )
347 344 346 sylancom ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ ( 𝐺 supp 0 ) )
348 341 347 sseldd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ Word ( 𝐸𝐹 ) )
349 32 ad2antrr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑞 : Word ( 𝐸𝐹 ) ⟶ ( 𝐸 × 𝐹 ) )
350 349 348 ffvelcdmd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × 𝐹 ) )
351 1st2nd2 ( ( 𝑞𝑣 ) ∈ ( 𝐸 × 𝐹 ) → ( 𝑞𝑣 ) = ⟨ ( 1st ‘ ( 𝑞𝑣 ) ) , ( 2nd ‘ ( 𝑞𝑣 ) ) ⟩ )
352 350 351 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑞𝑣 ) = ⟨ ( 1st ‘ ( 𝑞𝑣 ) ) , ( 2nd ‘ ( 𝑞𝑣 ) ) ⟩ )
353 350 143 syl ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 1st ‘ ( 𝑞𝑣 ) ) ∈ 𝐸 )
354 347 293 syldan ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) = ( 2nd ‘ ( 𝑞𝑣 ) ) )
355 345 simplbda ( ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) Fn ( 𝐺 supp 0 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } )
356 344 355 sylancom ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) ‘ 𝑣 ) ∈ { 𝑓 } )
357 354 356 eqeltrrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 2nd ‘ ( 𝑞𝑣 ) ) ∈ { 𝑓 } )
358 353 357 opelxpd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ⟨ ( 1st ‘ ( 𝑞𝑣 ) ) , ( 2nd ‘ ( 𝑞𝑣 ) ) ⟩ ∈ ( 𝐸 × { 𝑓 } ) )
359 352 358 eqeltrd ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → ( 𝑞𝑣 ) ∈ ( 𝐸 × { 𝑓 } ) )
360 340 348 359 elpreimad ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) ∧ 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ) → 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) )
361 360 ex ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑣 ∈ ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) → 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ) )
362 361 ssrdv ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( ( 𝑢 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑢 ) ) ) “ { 𝑓 } ) ⊆ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) )
363 324 362 eqsstrrid ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ⊆ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) )
364 1 3 275 262 329 331 339 363 gsummptres2 ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
365 364 adantlr ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( 𝑅 Σg ( 𝑤 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
366 260 274 365 3eqtr3d ( ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) ∧ 𝑓𝐹 ) → ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) = ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) )
367 366 mpteq2dva ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) = ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) )
368 367 oveq2d ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) ) = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ ( ( 𝑣 ∈ ( 𝐺 supp 0 ) ↦ ( 2nd ‘ ( 𝑞𝑣 ) ) ) “ { 𝑓 } ) ↦ ( ( 𝐺𝑤 ) ( .g𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) ) ) ) ) ) )
369 218 219 368 3eqtr4d ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → 𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) ) )
370 159 369 jca ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ( ( 𝑓𝐹 ↦ ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) ) finSupp 0𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑅 Σg ( 𝑣 ∈ ( 𝑞 “ ( 𝐸 × { 𝑓 } ) ) ↦ ( ( 𝐺𝑣 ) ( .g𝑅 ) ( 1st ‘ ( 𝑞𝑣 ) ) ) ) ) · 𝑓 ) ) ) ) )
371 65 79 370 rspcedvd ( ( ( 𝜑𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ) ∧ ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) → ∃ 𝑝 ∈ ( 𝐸m 𝐹 ) ( 𝑝 finSupp 0𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) ) ) )
372 fveq2 ( 𝑎 = ( 𝑞𝑤 ) → ( 1st𝑎 ) = ( 1st ‘ ( 𝑞𝑤 ) ) )
373 fveq2 ( 𝑎 = ( 𝑞𝑤 ) → ( 2nd𝑎 ) = ( 2nd ‘ ( 𝑞𝑤 ) ) )
374 372 373 oveq12d ( 𝑎 = ( 𝑞𝑤 ) → ( ( 1st𝑎 ) · ( 2nd𝑎 ) ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) )
375 374 eqeq2d ( 𝑎 = ( 𝑞𝑤 ) → ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st𝑎 ) · ( 2nd𝑎 ) ) ↔ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) ) )
376 vex 𝑒 ∈ V
377 vex 𝑓 ∈ V
378 376 377 op1std ( 𝑎 = ⟨ 𝑒 , 𝑓 ⟩ → ( 1st𝑎 ) = 𝑒 )
379 376 377 op2ndd ( 𝑎 = ⟨ 𝑒 , 𝑓 ⟩ → ( 2nd𝑎 ) = 𝑓 )
380 378 379 oveq12d ( 𝑎 = ⟨ 𝑒 , 𝑓 ⟩ → ( ( 1st𝑎 ) · ( 2nd𝑎 ) ) = ( 𝑒 · 𝑓 ) )
381 380 eqeq2d ( 𝑎 = ⟨ 𝑒 , 𝑓 ⟩ → ( ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st𝑎 ) · ( 2nd𝑎 ) ) ↔ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) )
382 simpllr ( ( ( ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) ∧ 𝑒𝐸 ) ∧ 𝑓𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → 𝑒𝐸 )
383 simplr ( ( ( ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) ∧ 𝑒𝐸 ) ∧ 𝑓𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → 𝑓𝐹 )
384 382 383 opelxpd ( ( ( ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) ∧ 𝑒𝐸 ) ∧ 𝑓𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → ⟨ 𝑒 , 𝑓 ⟩ ∈ ( 𝐸 × 𝐹 ) )
385 simpr ( ( ( ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) ∧ 𝑒𝐸 ) ∧ 𝑓𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) )
386 381 384 385 rspcedvdw ( ( ( ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) ∧ 𝑒𝐸 ) ∧ 𝑓𝐹 ) ∧ ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) ) → ∃ 𝑎 ∈ ( 𝐸 × 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st𝑎 ) · ( 2nd𝑎 ) ) )
387 169 2 mgpplusg · = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
388 171 adantr ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) → ( mulGrp ‘ 𝑅 ) ∈ CMnd )
389 169 subrgsubm ( 𝐸 ∈ ( SubRing ‘ 𝑅 ) → 𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
390 6 389 syl ( 𝜑𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
391 390 adantr ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) → 𝐸 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
392 169 subrgsubm ( 𝐹 ∈ ( SubRing ‘ 𝑅 ) → 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
393 7 392 syl ( 𝜑𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
394 393 adantr ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) → 𝐹 ∈ ( SubMnd ‘ ( mulGrp ‘ 𝑅 ) ) )
395 simpr ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) → 𝑤 ∈ Word ( 𝐸𝐹 ) )
396 387 388 391 394 395 gsumwun ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) → ∃ 𝑒𝐸𝑓𝐹 ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( 𝑒 · 𝑓 ) )
397 386 396 r19.29vva ( ( 𝜑𝑤 ∈ Word ( 𝐸𝐹 ) ) → ∃ 𝑎 ∈ ( 𝐸 × 𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st𝑎 ) · ( 2nd𝑎 ) ) )
398 375 30 27 397 ac6mapd ( 𝜑 → ∃ 𝑞 ∈ ( ( 𝐸 × 𝐹 ) ↑m Word ( 𝐸𝐹 ) ) ∀ 𝑤 ∈ Word ( 𝐸𝐹 ) ( ( mulGrp ‘ 𝑅 ) Σg 𝑤 ) = ( ( 1st ‘ ( 𝑞𝑤 ) ) · ( 2nd ‘ ( 𝑞𝑤 ) ) ) )
399 371 398 r19.29a ( 𝜑 → ∃ 𝑝 ∈ ( 𝐸m 𝐹 ) ( 𝑝 finSupp 0𝑋 = ( 𝑅 Σg ( 𝑓𝐹 ↦ ( ( 𝑝𝑓 ) · 𝑓 ) ) ) ) )