| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrgspnsubrun.b |
|
| 2 |
|
elrgspnsubrun.t |
|
| 3 |
|
elrgspnsubrun.z |
|
| 4 |
|
elrgspnsubrun.n |
|
| 5 |
|
elrgspnsubrun.r |
|
| 6 |
|
elrgspnsubrun.e |
|
| 7 |
|
elrgspnsubrun.f |
|
| 8 |
|
elrgspnsubrunlem2.x |
|
| 9 |
|
elrgspnsubrunlem2.1 |
|
| 10 |
|
elrgspnsubrunlem2.2 |
|
| 11 |
|
elrgspnsubrunlem2.3 |
|
| 12 |
6
|
ad2antrr |
|
| 13 |
7
|
ad2antrr |
|
| 14 |
5
|
crngringd |
|
| 15 |
14
|
ringabld |
|
| 16 |
15
|
ad3antrrr |
|
| 17 |
|
vex |
|
| 18 |
17
|
cnvex |
|
| 19 |
18
|
imaex |
|
| 20 |
19
|
a1i |
|
| 21 |
|
subrgsubg |
|
| 22 |
6 21
|
syl |
|
| 23 |
22
|
ad3antrrr |
|
| 24 |
|
eqid |
|
| 25 |
5
|
crnggrpd |
|
| 26 |
25
|
ad4antr |
|
| 27 |
6 7
|
xpexd |
|
| 28 |
6 7
|
unexd |
|
| 29 |
|
wrdexg |
|
| 30 |
28 29
|
syl |
|
| 31 |
27 30
|
elmapd |
|
| 32 |
31
|
biimpa |
|
| 33 |
32
|
ffund |
|
| 34 |
33
|
ad3antrrr |
|
| 35 |
|
fvimacnvi |
|
| 36 |
34 35
|
sylancom |
|
| 37 |
|
xp1st |
|
| 38 |
36 37
|
syl |
|
| 39 |
23
|
adantr |
|
| 40 |
9
|
ad4antr |
|
| 41 |
|
cnvimass |
|
| 42 |
32
|
fdmd |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
41 43
|
sseqtrid |
|
| 45 |
44
|
sselda |
|
| 46 |
40 45
|
ffvelcdmd |
|
| 47 |
1 24 26 38 39 46
|
subgmulgcld |
|
| 48 |
47
|
fmpttd |
|
| 49 |
9
|
feqmptd |
|
| 50 |
49 10
|
eqbrtrrd |
|
| 51 |
50
|
ad3antrrr |
|
| 52 |
|
0zd |
|
| 53 |
51 44 52
|
fmptssfisupp |
|
| 54 |
1
|
subrgss |
|
| 55 |
6 54
|
syl |
|
| 56 |
55
|
ad3antrrr |
|
| 57 |
56
|
sselda |
|
| 58 |
1 3 24
|
mulg0 |
|
| 59 |
57 58
|
syl |
|
| 60 |
3
|
fvexi |
|
| 61 |
60
|
a1i |
|
| 62 |
53 59 46 38 61
|
fsuppssov1 |
|
| 63 |
3 16 20 23 48 62
|
gsumsubgcl |
|
| 64 |
63
|
fmpttd |
|
| 65 |
12 13 64
|
elmapdd |
|
| 66 |
|
breq1 |
|
| 67 |
66
|
adantl |
|
| 68 |
|
nfv |
|
| 69 |
|
nfmpt1 |
|
| 70 |
69
|
nfeq2 |
|
| 71 |
68 70
|
nfan |
|
| 72 |
|
simpr |
|
| 73 |
|
ovexd |
|
| 74 |
72 73
|
fvmpt2d |
|
| 75 |
74
|
oveq1d |
|
| 76 |
71 75
|
mpteq2da |
|
| 77 |
76
|
oveq2d |
|
| 78 |
77
|
eqeq2d |
|
| 79 |
67 78
|
anbi12d |
|
| 80 |
60
|
a1i |
|
| 81 |
64
|
ffund |
|
| 82 |
33
|
adantr |
|
| 83 |
10
|
fsuppimpd |
|
| 84 |
83
|
ad2antrr |
|
| 85 |
|
imafi |
|
| 86 |
82 84 85
|
syl2anc |
|
| 87 |
|
rnfi |
|
| 88 |
86 87
|
syl |
|
| 89 |
9
|
ffnd |
|
| 90 |
89
|
ad4antr |
|
| 91 |
30
|
ad4antr |
|
| 92 |
|
0zd |
|
| 93 |
|
snssi |
|
| 94 |
93
|
adantl |
|
| 95 |
|
xpss2 |
|
| 96 |
|
ssun2 |
|
| 97 |
|
difxp |
|
| 98 |
96 97
|
sseqtrri |
|
| 99 |
95 98
|
sstrdi |
|
| 100 |
94 99
|
syl |
|
| 101 |
|
imassrn |
|
| 102 |
32
|
frnd |
|
| 103 |
102
|
adantr |
|
| 104 |
101 103
|
sstrid |
|
| 105 |
|
relxp |
|
| 106 |
|
relss |
|
| 107 |
105 106
|
mpi |
|
| 108 |
|
relssdmrn |
|
| 109 |
104 107 108
|
3syl |
|
| 110 |
109
|
sscond |
|
| 111 |
100 110
|
sstrd |
|
| 112 |
|
imass2 |
|
| 113 |
111 112
|
syl |
|
| 114 |
113
|
adantlr |
|
| 115 |
82
|
adantr |
|
| 116 |
|
difpreima |
|
| 117 |
115 116
|
syl |
|
| 118 |
|
cnvimass |
|
| 119 |
42
|
ad2antrr |
|
| 120 |
118 119
|
sseqtrid |
|
| 121 |
|
suppssdm |
|
| 122 |
9
|
fdmd |
|
| 123 |
122
|
ad3antrrr |
|
| 124 |
121 123
|
sseqtrid |
|
| 125 |
124 119
|
sseqtrrd |
|
| 126 |
|
sseqin2 |
|
| 127 |
126
|
biimpi |
|
| 128 |
|
dminss |
|
| 129 |
127 128
|
eqsstrrdi |
|
| 130 |
125 129
|
syl |
|
| 131 |
120 130
|
ssdif2d |
|
| 132 |
117 131
|
eqsstrd |
|
| 133 |
114 132
|
sstrd |
|
| 134 |
133
|
sselda |
|
| 135 |
90 91 92 134
|
fvdifsupp |
|
| 136 |
135
|
oveq1d |
|
| 137 |
55
|
ad4antr |
|
| 138 |
32
|
ad3antrrr |
|
| 139 |
41 42
|
sseqtrid |
|
| 140 |
139
|
ad2antrr |
|
| 141 |
140
|
sselda |
|
| 142 |
138 141
|
ffvelcdmd |
|
| 143 |
|
xp1st |
|
| 144 |
142 143
|
syl |
|
| 145 |
137 144
|
sseldd |
|
| 146 |
1 3 24
|
mulg0 |
|
| 147 |
145 146
|
syl |
|
| 148 |
136 147
|
eqtrd |
|
| 149 |
148
|
mpteq2dva |
|
| 150 |
149
|
oveq2d |
|
| 151 |
25
|
grpmndd |
|
| 152 |
151
|
ad3antrrr |
|
| 153 |
19
|
a1i |
|
| 154 |
3
|
gsumz |
|
| 155 |
152 153 154
|
syl2anc |
|
| 156 |
150 155
|
eqtrd |
|
| 157 |
156 13
|
suppss2 |
|
| 158 |
88 157
|
ssfid |
|
| 159 |
65 80 81 158
|
isfsuppd |
|
| 160 |
15
|
ablcmnd |
|
| 161 |
160
|
adantr |
|
| 162 |
30
|
adantr |
|
| 163 |
89
|
ad2antrr |
|
| 164 |
162
|
adantr |
|
| 165 |
|
0zd |
|
| 166 |
|
simpr |
|
| 167 |
163 164 165 166
|
fvdifsupp |
|
| 168 |
167
|
oveq1d |
|
| 169 |
|
eqid |
|
| 170 |
169
|
crngmgp |
|
| 171 |
5 170
|
syl |
|
| 172 |
171
|
cmnmndd |
|
| 173 |
172
|
ad2antrr |
|
| 174 |
1
|
subrgss |
|
| 175 |
7 174
|
syl |
|
| 176 |
55 175
|
unssd |
|
| 177 |
|
sswrd |
|
| 178 |
176 177
|
syl |
|
| 179 |
178
|
adantr |
|
| 180 |
179
|
adantr |
|
| 181 |
166
|
eldifad |
|
| 182 |
180 181
|
sseldd |
|
| 183 |
169 1
|
mgpbas |
|
| 184 |
183
|
gsumwcl |
|
| 185 |
173 182 184
|
syl2anc |
|
| 186 |
1 3 24
|
mulg0 |
|
| 187 |
185 186
|
syl |
|
| 188 |
168 187
|
eqtrd |
|
| 189 |
83
|
adantr |
|
| 190 |
25
|
ad2antrr |
|
| 191 |
9
|
adantr |
|
| 192 |
191
|
ffvelcdmda |
|
| 193 |
172
|
ad2antrr |
|
| 194 |
179
|
sselda |
|
| 195 |
193 194 184
|
syl2anc |
|
| 196 |
1 24 190 192 195
|
mulgcld |
|
| 197 |
121 122
|
sseqtrid |
|
| 198 |
197
|
adantr |
|
| 199 |
1 3 161 162 188 189 196 198
|
gsummptres2 |
|
| 200 |
7
|
adantr |
|
| 201 |
25
|
ad2antrr |
|
| 202 |
9
|
ad2antrr |
|
| 203 |
198
|
sselda |
|
| 204 |
202 203
|
ffvelcdmd |
|
| 205 |
172
|
ad2antrr |
|
| 206 |
198 179
|
sstrd |
|
| 207 |
206
|
sselda |
|
| 208 |
205 207 184
|
syl2anc |
|
| 209 |
1 24 201 204 208
|
mulgcld |
|
| 210 |
32
|
adantr |
|
| 211 |
210 203
|
ffvelcdmd |
|
| 212 |
|
xp2nd |
|
| 213 |
211 212
|
syl |
|
| 214 |
|
2fveq3 |
|
| 215 |
214
|
cbvmptv |
|
| 216 |
1 3 161 189 200 209 213 215
|
gsummpt2co |
|
| 217 |
199 216
|
eqtrd |
|
| 218 |
217
|
adantr |
|
| 219 |
11
|
ad2antrr |
|
| 220 |
14
|
ad4antr |
|
| 221 |
55
|
ad3antrrr |
|
| 222 |
32
|
ad2antrr |
|
| 223 |
139
|
adantr |
|
| 224 |
223
|
sselda |
|
| 225 |
222 224
|
ffvelcdmd |
|
| 226 |
225 143
|
syl |
|
| 227 |
221 226
|
sseldd |
|
| 228 |
227
|
adantllr |
|
| 229 |
200 174
|
syl |
|
| 230 |
229
|
sselda |
|
| 231 |
230
|
ad4ant13 |
|
| 232 |
1 24 2
|
mulgass2 |
|
| 233 |
220 46 228 231 232
|
syl13anc |
|
| 234 |
|
oveq2 |
|
| 235 |
|
2fveq3 |
|
| 236 |
|
2fveq3 |
|
| 237 |
235 236
|
oveq12d |
|
| 238 |
234 237
|
eqeq12d |
|
| 239 |
|
simpllr |
|
| 240 |
238 239 45
|
rspcdva |
|
| 241 |
32
|
ffnd |
|
| 242 |
241
|
ad2antrr |
|
| 243 |
|
elpreima |
|
| 244 |
243
|
simplbda |
|
| 245 |
242 244
|
sylancom |
|
| 246 |
|
xp2nd |
|
| 247 |
245 246
|
syl |
|
| 248 |
247
|
elsnd |
|
| 249 |
248
|
adantllr |
|
| 250 |
249
|
oveq2d |
|
| 251 |
240 250
|
eqtrd |
|
| 252 |
251
|
oveq2d |
|
| 253 |
233 252
|
eqtr4d |
|
| 254 |
253
|
mpteq2dva |
|
| 255 |
|
fveq2 |
|
| 256 |
|
oveq2 |
|
| 257 |
255 256
|
oveq12d |
|
| 258 |
257
|
cbvmptv |
|
| 259 |
254 258
|
eqtrdi |
|
| 260 |
259
|
oveq2d |
|
| 261 |
14
|
ad2antrr |
|
| 262 |
19
|
a1i |
|
| 263 |
25
|
ad3antrrr |
|
| 264 |
191
|
ad2antrr |
|
| 265 |
264 224
|
ffvelcdmd |
|
| 266 |
1 24 263 265 227
|
mulgcld |
|
| 267 |
50
|
ad2antrr |
|
| 268 |
|
0zd |
|
| 269 |
267 223 268
|
fmptssfisupp |
|
| 270 |
58
|
adantl |
|
| 271 |
60
|
a1i |
|
| 272 |
269 270 265 227 271
|
fsuppssov1 |
|
| 273 |
1 3 2 261 262 230 266 272
|
gsummulc1 |
|
| 274 |
273
|
adantlr |
|
| 275 |
161
|
adantr |
|
| 276 |
89
|
ad3antrrr |
|
| 277 |
162
|
ad2antrr |
|
| 278 |
|
0zd |
|
| 279 |
139
|
ad2antrr |
|
| 280 |
|
simpr |
|
| 281 |
280
|
eldifad |
|
| 282 |
279 281
|
sseldd |
|
| 283 |
|
eldif |
|
| 284 |
|
nfv |
|
| 285 |
|
fvexd |
|
| 286 |
|
eqid |
|
| 287 |
284 285 286
|
fnmptd |
|
| 288 |
287
|
adantlr |
|
| 289 |
|
simpr |
|
| 290 |
|
2fveq3 |
|
| 291 |
|
simpr |
|
| 292 |
|
fvexd |
|
| 293 |
286 290 291 292
|
fvmptd3 |
|
| 294 |
293
|
adantlr |
|
| 295 |
241
|
ad3antrrr |
|
| 296 |
|
simplr |
|
| 297 |
295 296 244
|
syl2anc |
|
| 298 |
297 246
|
syl |
|
| 299 |
294 298
|
eqeltrd |
|
| 300 |
288 289 299
|
elpreimad |
|
| 301 |
300
|
stoic1a |
|
| 302 |
301
|
anasss |
|
| 303 |
283 302
|
sylan2b |
|
| 304 |
282 303
|
eldifd |
|
| 305 |
276 277 278 304
|
fvdifsupp |
|
| 306 |
305
|
oveq1d |
|
| 307 |
172
|
ad3antrrr |
|
| 308 |
179
|
adantr |
|
| 309 |
223 308
|
sstrd |
|
| 310 |
309
|
ssdifssd |
|
| 311 |
310
|
sselda |
|
| 312 |
183
|
gsumwcl |
|
| 313 |
307 311 312
|
syl2anc |
|
| 314 |
1 3 24
|
mulg0 |
|
| 315 |
313 314
|
syl |
|
| 316 |
306 315
|
eqtrd |
|
| 317 |
316
|
ralrimiva |
|
| 318 |
257
|
eqeq1d |
|
| 319 |
318
|
cbvralvw |
|
| 320 |
|
2fveq3 |
|
| 321 |
320
|
cbvmptv |
|
| 322 |
321 215
|
eqtr4i |
|
| 323 |
322
|
cnveqi |
|
| 324 |
323
|
imaeq1i |
|
| 325 |
324
|
difeq2i |
|
| 326 |
325
|
raleqi |
|
| 327 |
319 326
|
bitri |
|
| 328 |
317 327
|
sylib |
|
| 329 |
328
|
r19.21bi |
|
| 330 |
189
|
adantr |
|
| 331 |
330
|
cnvimamptfin |
|
| 332 |
25
|
ad3antrrr |
|
| 333 |
191
|
ad2antrr |
|
| 334 |
223
|
sselda |
|
| 335 |
333 334
|
ffvelcdmd |
|
| 336 |
172
|
ad3antrrr |
|
| 337 |
309
|
sselda |
|
| 338 |
336 337 184
|
syl2anc |
|
| 339 |
1 24 332 335 338
|
mulgcld |
|
| 340 |
241
|
ad2antrr |
|
| 341 |
198
|
ad2antrr |
|
| 342 |
|
nfv |
|
| 343 |
|
fvexd |
|
| 344 |
342 343 321
|
fnmptd |
|
| 345 |
|
elpreima |
|
| 346 |
345
|
simprbda |
|
| 347 |
344 346
|
sylancom |
|
| 348 |
341 347
|
sseldd |
|
| 349 |
32
|
ad2antrr |
|
| 350 |
349 348
|
ffvelcdmd |
|
| 351 |
|
1st2nd2 |
|
| 352 |
350 351
|
syl |
|
| 353 |
350 143
|
syl |
|
| 354 |
347 293
|
syldan |
|
| 355 |
345
|
simplbda |
|
| 356 |
344 355
|
sylancom |
|
| 357 |
354 356
|
eqeltrrd |
|
| 358 |
353 357
|
opelxpd |
|
| 359 |
352 358
|
eqeltrd |
|
| 360 |
340 348 359
|
elpreimad |
|
| 361 |
360
|
ex |
|
| 362 |
361
|
ssrdv |
|
| 363 |
324 362
|
eqsstrrid |
|
| 364 |
1 3 275 262 329 331 339 363
|
gsummptres2 |
|
| 365 |
364
|
adantlr |
|
| 366 |
260 274 365
|
3eqtr3d |
|
| 367 |
366
|
mpteq2dva |
|
| 368 |
367
|
oveq2d |
|
| 369 |
218 219 368
|
3eqtr4d |
|
| 370 |
159 369
|
jca |
|
| 371 |
65 79 370
|
rspcedvd |
|
| 372 |
|
fveq2 |
|
| 373 |
|
fveq2 |
|
| 374 |
372 373
|
oveq12d |
|
| 375 |
374
|
eqeq2d |
|
| 376 |
|
vex |
|
| 377 |
|
vex |
|
| 378 |
376 377
|
op1std |
|
| 379 |
376 377
|
op2ndd |
|
| 380 |
378 379
|
oveq12d |
|
| 381 |
380
|
eqeq2d |
|
| 382 |
|
simpllr |
|
| 383 |
|
simplr |
|
| 384 |
382 383
|
opelxpd |
|
| 385 |
|
simpr |
|
| 386 |
381 384 385
|
rspcedvdw |
|
| 387 |
169 2
|
mgpplusg |
|
| 388 |
171
|
adantr |
|
| 389 |
169
|
subrgsubm |
|
| 390 |
6 389
|
syl |
|
| 391 |
390
|
adantr |
|
| 392 |
169
|
subrgsubm |
|
| 393 |
7 392
|
syl |
|
| 394 |
393
|
adantr |
|
| 395 |
|
simpr |
|
| 396 |
387 388 391 394 395
|
gsumwun |
|
| 397 |
386 396
|
r19.29vva |
|
| 398 |
375 30 27 397
|
ac6mapd |
|
| 399 |
371 398
|
r19.29a |
|