Metamath Proof Explorer


Theorem elrgspnsubrunlem2

Description: Lemma for elrgspnsubrun , second direction. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elrgspnsubrun.b B = Base R
elrgspnsubrun.t · ˙ = R
elrgspnsubrun.z 0 ˙ = 0 R
elrgspnsubrun.n N = RingSpan R
elrgspnsubrun.r φ R CRing
elrgspnsubrun.e φ E SubRing R
elrgspnsubrun.f φ F SubRing R
elrgspnsubrunlem2.x φ X B
elrgspnsubrunlem2.1 φ G : Word E F
elrgspnsubrunlem2.2 φ finSupp 0 G
elrgspnsubrunlem2.3 φ X = R w Word E F G w R mulGrp R w
Assertion elrgspnsubrunlem2 φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f

Proof

Step Hyp Ref Expression
1 elrgspnsubrun.b B = Base R
2 elrgspnsubrun.t · ˙ = R
3 elrgspnsubrun.z 0 ˙ = 0 R
4 elrgspnsubrun.n N = RingSpan R
5 elrgspnsubrun.r φ R CRing
6 elrgspnsubrun.e φ E SubRing R
7 elrgspnsubrun.f φ F SubRing R
8 elrgspnsubrunlem2.x φ X B
9 elrgspnsubrunlem2.1 φ G : Word E F
10 elrgspnsubrunlem2.2 φ finSupp 0 G
11 elrgspnsubrunlem2.3 φ X = R w Word E F G w R mulGrp R w
12 6 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w E SubRing R
13 7 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w F SubRing R
14 5 crngringd φ R Ring
15 14 ringabld φ R Abel
16 15 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R Abel
17 vex q V
18 17 cnvex q -1 V
19 18 imaex q -1 E × f V
20 19 a1i φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F q -1 E × f V
21 subrgsubg E SubRing R E SubGrp R
22 6 21 syl φ E SubGrp R
23 22 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F E SubGrp R
24 eqid R = R
25 5 crnggrpd φ R Grp
26 25 ad4antr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f R Grp
27 6 7 xpexd φ E × F V
28 6 7 unexd φ E F V
29 wrdexg E F V Word E F V
30 28 29 syl φ Word E F V
31 27 30 elmapd φ q E × F Word E F q : Word E F E × F
32 31 biimpa φ q E × F Word E F q : Word E F E × F
33 32 ffund φ q E × F Word E F Fun q
34 33 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f Fun q
35 fvimacnvi Fun q v q -1 E × f q v E × f
36 34 35 sylancom φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f q v E × f
37 xp1st q v E × f 1 st q v E
38 36 37 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f 1 st q v E
39 23 adantr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f E SubGrp R
40 9 ad4antr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G : Word E F
41 cnvimass q -1 E × f dom q
42 32 fdmd φ q E × F Word E F dom q = Word E F
43 42 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F dom q = Word E F
44 41 43 sseqtrid φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F q -1 E × f Word E F
45 44 sselda φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f v Word E F
46 40 45 ffvelcdmd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v
47 1 24 26 38 39 46 subgmulgcld φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R 1 st q v E
48 47 fmpttd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R 1 st q v : q -1 E × f E
49 9 feqmptd φ G = v Word E F G v
50 49 10 eqbrtrrd φ finSupp 0 v Word E F G v
51 50 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F finSupp 0 v Word E F G v
52 0zd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F 0
53 51 44 52 fmptssfisupp φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F finSupp 0 v q -1 E × f G v
54 1 subrgss E SubRing R E B
55 6 54 syl φ E B
56 55 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F E B
57 56 sselda φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F y E y B
58 1 3 24 mulg0 y B 0 R y = 0 ˙
59 57 58 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F y E 0 R y = 0 ˙
60 3 fvexi 0 ˙ V
61 60 a1i φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F 0 ˙ V
62 53 59 46 38 61 fsuppssov1 φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F finSupp 0 ˙ v q -1 E × f G v R 1 st q v
63 3 16 20 23 48 62 gsumsubgcl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v E
64 63 fmpttd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v : F E
65 12 13 64 elmapdd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v E F
66 breq1 p = f F R v q -1 E × f G v R 1 st q v finSupp 0 ˙ p finSupp 0 ˙ f F R v q -1 E × f G v R 1 st q v
67 66 adantl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v finSupp 0 ˙ p finSupp 0 ˙ f F R v q -1 E × f G v R 1 st q v
68 nfv f φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w
69 nfmpt1 _ f f F R v q -1 E × f G v R 1 st q v
70 69 nfeq2 f p = f F R v q -1 E × f G v R 1 st q v
71 68 70 nfan f φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v
72 simpr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v p = f F R v q -1 E × f G v R 1 st q v
73 ovexd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v f F R v q -1 E × f G v R 1 st q v V
74 72 73 fvmpt2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v f F p f = R v q -1 E × f G v R 1 st q v
75 74 oveq1d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v f F p f · ˙ f = R v q -1 E × f G v R 1 st q v · ˙ f
76 71 75 mpteq2da φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v f F p f · ˙ f = f F R v q -1 E × f G v R 1 st q v · ˙ f
77 76 oveq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v R f F p f · ˙ f = R f F R v q -1 E × f G v R 1 st q v · ˙ f
78 77 eqeq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v X = R f F p f · ˙ f X = R f F R v q -1 E × f G v R 1 st q v · ˙ f
79 67 78 anbi12d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p = f F R v q -1 E × f G v R 1 st q v finSupp 0 ˙ p X = R f F p f · ˙ f finSupp 0 ˙ f F R v q -1 E × f G v R 1 st q v X = R f F R v q -1 E × f G v R 1 st q v · ˙ f
80 60 a1i φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w 0 ˙ V
81 64 ffund φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w Fun f F R v q -1 E × f G v R 1 st q v
82 33 adantr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w Fun q
83 10 fsuppimpd φ G supp 0 Fin
84 83 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w G supp 0 Fin
85 imafi Fun q G supp 0 Fin q G supp 0 Fin
86 82 84 85 syl2anc φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w q G supp 0 Fin
87 rnfi q G supp 0 Fin ran q G supp 0 Fin
88 86 87 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w ran q G supp 0 Fin
89 9 ffnd φ G Fn Word E F
90 89 ad4antr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f G Fn Word E F
91 30 ad4antr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f Word E F V
92 0zd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f 0
93 snssi f F ran q G supp 0 f F ran q G supp 0
94 93 adantl φ q E × F Word E F f F ran q G supp 0 f F ran q G supp 0
95 xpss2 f F ran q G supp 0 E × f E × F ran q G supp 0
96 ssun2 E × F ran q G supp 0 E dom q G supp 0 × F E × F ran q G supp 0
97 difxp E × F dom q G supp 0 × ran q G supp 0 = E dom q G supp 0 × F E × F ran q G supp 0
98 96 97 sseqtrri E × F ran q G supp 0 E × F dom q G supp 0 × ran q G supp 0
99 95 98 sstrdi f F ran q G supp 0 E × f E × F dom q G supp 0 × ran q G supp 0
100 94 99 syl φ q E × F Word E F f F ran q G supp 0 E × f E × F dom q G supp 0 × ran q G supp 0
101 imassrn q G supp 0 ran q
102 32 frnd φ q E × F Word E F ran q E × F
103 102 adantr φ q E × F Word E F f F ran q G supp 0 ran q E × F
104 101 103 sstrid φ q E × F Word E F f F ran q G supp 0 q G supp 0 E × F
105 relxp Rel E × F
106 relss q G supp 0 E × F Rel E × F Rel q G supp 0
107 105 106 mpi q G supp 0 E × F Rel q G supp 0
108 relssdmrn Rel q G supp 0 q G supp 0 dom q G supp 0 × ran q G supp 0
109 104 107 108 3syl φ q E × F Word E F f F ran q G supp 0 q G supp 0 dom q G supp 0 × ran q G supp 0
110 109 sscond φ q E × F Word E F f F ran q G supp 0 E × F dom q G supp 0 × ran q G supp 0 E × F q G supp 0
111 100 110 sstrd φ q E × F Word E F f F ran q G supp 0 E × f E × F q G supp 0
112 imass2 E × f E × F q G supp 0 q -1 E × f q -1 E × F q G supp 0
113 111 112 syl φ q E × F Word E F f F ran q G supp 0 q -1 E × f q -1 E × F q G supp 0
114 113 adantlr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × f q -1 E × F q G supp 0
115 82 adantr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 Fun q
116 difpreima Fun q q -1 E × F q G supp 0 = q -1 E × F q -1 q G supp 0
117 115 116 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × F q G supp 0 = q -1 E × F q -1 q G supp 0
118 cnvimass q -1 E × F dom q
119 42 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 dom q = Word E F
120 118 119 sseqtrid φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × F Word E F
121 suppssdm G supp 0 dom G
122 9 fdmd φ dom G = Word E F
123 122 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 dom G = Word E F
124 121 123 sseqtrid φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 G supp 0 Word E F
125 124 119 sseqtrrd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 G supp 0 dom q
126 sseqin2 G supp 0 dom q dom q supp 0 G = G supp 0
127 126 biimpi G supp 0 dom q dom q supp 0 G = G supp 0
128 dminss dom q supp 0 G q -1 q G supp 0
129 127 128 eqsstrrdi G supp 0 dom q G supp 0 q -1 q G supp 0
130 125 129 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 G supp 0 q -1 q G supp 0
131 120 130 ssdif2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × F q -1 q G supp 0 Word E F supp 0 G
132 117 131 eqsstrd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × F q G supp 0 Word E F supp 0 G
133 114 132 sstrd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × f Word E F supp 0 G
134 133 sselda φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f v Word E F supp 0 G
135 90 91 92 134 fvdifsupp φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f G v = 0
136 135 oveq1d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f G v R 1 st q v = 0 R 1 st q v
137 55 ad4antr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f E B
138 32 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f q : Word E F E × F
139 41 42 sseqtrid φ q E × F Word E F q -1 E × f Word E F
140 139 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × f Word E F
141 140 sselda φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f v Word E F
142 138 141 ffvelcdmd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f q v E × F
143 xp1st q v E × F 1 st q v E
144 142 143 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f 1 st q v E
145 137 144 sseldd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f 1 st q v B
146 1 3 24 mulg0 1 st q v B 0 R 1 st q v = 0 ˙
147 145 146 syl φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f 0 R 1 st q v = 0 ˙
148 136 147 eqtrd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f G v R 1 st q v = 0 ˙
149 148 mpteq2dva φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 v q -1 E × f G v R 1 st q v = v q -1 E × f 0 ˙
150 149 oveq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 R v q -1 E × f G v R 1 st q v = R v q -1 E × f 0 ˙
151 25 grpmndd φ R Mnd
152 151 ad3antrrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 R Mnd
153 19 a1i φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 q -1 E × f V
154 3 gsumz R Mnd q -1 E × f V R v q -1 E × f 0 ˙ = 0 ˙
155 152 153 154 syl2anc φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 R v q -1 E × f 0 ˙ = 0 ˙
156 150 155 eqtrd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F ran q G supp 0 R v q -1 E × f G v R 1 st q v = 0 ˙
157 156 13 suppss2 φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v supp 0 ˙ ran q G supp 0
158 88 157 ssfid φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v supp 0 ˙ Fin
159 65 80 81 158 isfsuppd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w finSupp 0 ˙ f F R v q -1 E × f G v R 1 st q v
160 15 ablcmnd φ R CMnd
161 160 adantr φ q E × F Word E F R CMnd
162 30 adantr φ q E × F Word E F Word E F V
163 89 ad2antrr φ q E × F Word E F w Word E F supp 0 G G Fn Word E F
164 162 adantr φ q E × F Word E F w Word E F supp 0 G Word E F V
165 0zd φ q E × F Word E F w Word E F supp 0 G 0
166 simpr φ q E × F Word E F w Word E F supp 0 G w Word E F supp 0 G
167 163 164 165 166 fvdifsupp φ q E × F Word E F w Word E F supp 0 G G w = 0
168 167 oveq1d φ q E × F Word E F w Word E F supp 0 G G w R mulGrp R w = 0 R mulGrp R w
169 eqid mulGrp R = mulGrp R
170 169 crngmgp R CRing mulGrp R CMnd
171 5 170 syl φ mulGrp R CMnd
172 171 cmnmndd φ mulGrp R Mnd
173 172 ad2antrr φ q E × F Word E F w Word E F supp 0 G mulGrp R Mnd
174 1 subrgss F SubRing R F B
175 7 174 syl φ F B
176 55 175 unssd φ E F B
177 sswrd E F B Word E F Word B
178 176 177 syl φ Word E F Word B
179 178 adantr φ q E × F Word E F Word E F Word B
180 179 adantr φ q E × F Word E F w Word E F supp 0 G Word E F Word B
181 166 eldifad φ q E × F Word E F w Word E F supp 0 G w Word E F
182 180 181 sseldd φ q E × F Word E F w Word E F supp 0 G w Word B
183 169 1 mgpbas B = Base mulGrp R
184 183 gsumwcl mulGrp R Mnd w Word B mulGrp R w B
185 173 182 184 syl2anc φ q E × F Word E F w Word E F supp 0 G mulGrp R w B
186 1 3 24 mulg0 mulGrp R w B 0 R mulGrp R w = 0 ˙
187 185 186 syl φ q E × F Word E F w Word E F supp 0 G 0 R mulGrp R w = 0 ˙
188 168 187 eqtrd φ q E × F Word E F w Word E F supp 0 G G w R mulGrp R w = 0 ˙
189 83 adantr φ q E × F Word E F G supp 0 Fin
190 25 ad2antrr φ q E × F Word E F w Word E F R Grp
191 9 adantr φ q E × F Word E F G : Word E F
192 191 ffvelcdmda φ q E × F Word E F w Word E F G w
193 172 ad2antrr φ q E × F Word E F w Word E F mulGrp R Mnd
194 179 sselda φ q E × F Word E F w Word E F w Word B
195 193 194 184 syl2anc φ q E × F Word E F w Word E F mulGrp R w B
196 1 24 190 192 195 mulgcld φ q E × F Word E F w Word E F G w R mulGrp R w B
197 121 122 sseqtrid φ G supp 0 Word E F
198 197 adantr φ q E × F Word E F G supp 0 Word E F
199 1 3 161 162 188 189 196 198 gsummptres2 φ q E × F Word E F R w Word E F G w R mulGrp R w = R w G supp 0 G w R mulGrp R w
200 7 adantr φ q E × F Word E F F SubRing R
201 25 ad2antrr φ q E × F Word E F w supp 0 G R Grp
202 9 ad2antrr φ q E × F Word E F w supp 0 G G : Word E F
203 198 sselda φ q E × F Word E F w supp 0 G w Word E F
204 202 203 ffvelcdmd φ q E × F Word E F w supp 0 G G w
205 172 ad2antrr φ q E × F Word E F w supp 0 G mulGrp R Mnd
206 198 179 sstrd φ q E × F Word E F G supp 0 Word B
207 206 sselda φ q E × F Word E F w supp 0 G w Word B
208 205 207 184 syl2anc φ q E × F Word E F w supp 0 G mulGrp R w B
209 1 24 201 204 208 mulgcld φ q E × F Word E F w supp 0 G G w R mulGrp R w B
210 32 adantr φ q E × F Word E F w supp 0 G q : Word E F E × F
211 210 203 ffvelcdmd φ q E × F Word E F w supp 0 G q w E × F
212 xp2nd q w E × F 2 nd q w F
213 211 212 syl φ q E × F Word E F w supp 0 G 2 nd q w F
214 2fveq3 v = w 2 nd q v = 2 nd q w
215 214 cbvmptv v supp 0 G 2 nd q v = w supp 0 G 2 nd q w
216 1 3 161 189 200 209 213 215 gsummpt2co φ q E × F Word E F R w G supp 0 G w R mulGrp R w = R f F R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
217 199 216 eqtrd φ q E × F Word E F R w Word E F G w R mulGrp R w = R f F R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
218 217 adantr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w R w Word E F G w R mulGrp R w = R f F R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
219 11 ad2antrr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w X = R w Word E F G w R mulGrp R w
220 14 ad4antr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f R Ring
221 55 ad3antrrr φ q E × F Word E F f F v q -1 E × f E B
222 32 ad2antrr φ q E × F Word E F f F v q -1 E × f q : Word E F E × F
223 139 adantr φ q E × F Word E F f F q -1 E × f Word E F
224 223 sselda φ q E × F Word E F f F v q -1 E × f v Word E F
225 222 224 ffvelcdmd φ q E × F Word E F f F v q -1 E × f q v E × F
226 225 143 syl φ q E × F Word E F f F v q -1 E × f 1 st q v E
227 221 226 sseldd φ q E × F Word E F f F v q -1 E × f 1 st q v B
228 227 adantllr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f 1 st q v B
229 200 174 syl φ q E × F Word E F F B
230 229 sselda φ q E × F Word E F f F f B
231 230 ad4ant13 φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f f B
232 1 24 2 mulgass2 R Ring G v 1 st q v B f B G v R 1 st q v · ˙ f = G v R 1 st q v · ˙ f
233 220 46 228 231 232 syl13anc φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R 1 st q v · ˙ f = G v R 1 st q v · ˙ f
234 oveq2 w = v mulGrp R w = mulGrp R v
235 2fveq3 w = v 1 st q w = 1 st q v
236 2fveq3 w = v 2 nd q w = 2 nd q v
237 235 236 oveq12d w = v 1 st q w · ˙ 2 nd q w = 1 st q v · ˙ 2 nd q v
238 234 237 eqeq12d w = v mulGrp R w = 1 st q w · ˙ 2 nd q w mulGrp R v = 1 st q v · ˙ 2 nd q v
239 simpllr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w
240 238 239 45 rspcdva φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f mulGrp R v = 1 st q v · ˙ 2 nd q v
241 32 ffnd φ q E × F Word E F q Fn Word E F
242 241 ad2antrr φ q E × F Word E F f F v q -1 E × f q Fn Word E F
243 elpreima q Fn Word E F v q -1 E × f v Word E F q v E × f
244 243 simplbda q Fn Word E F v q -1 E × f q v E × f
245 242 244 sylancom φ q E × F Word E F f F v q -1 E × f q v E × f
246 xp2nd q v E × f 2 nd q v f
247 245 246 syl φ q E × F Word E F f F v q -1 E × f 2 nd q v f
248 247 elsnd φ q E × F Word E F f F v q -1 E × f 2 nd q v = f
249 248 adantllr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f 2 nd q v = f
250 249 oveq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f 1 st q v · ˙ 2 nd q v = 1 st q v · ˙ f
251 240 250 eqtrd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f mulGrp R v = 1 st q v · ˙ f
252 251 oveq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R mulGrp R v = G v R 1 st q v · ˙ f
253 233 252 eqtr4d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R 1 st q v · ˙ f = G v R mulGrp R v
254 253 mpteq2dva φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R 1 st q v · ˙ f = v q -1 E × f G v R mulGrp R v
255 fveq2 v = w G v = G w
256 oveq2 v = w mulGrp R v = mulGrp R w
257 255 256 oveq12d v = w G v R mulGrp R v = G w R mulGrp R w
258 257 cbvmptv v q -1 E × f G v R mulGrp R v = w q -1 E × f G w R mulGrp R w
259 254 258 eqtrdi φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F v q -1 E × f G v R 1 st q v · ˙ f = w q -1 E × f G w R mulGrp R w
260 259 oveq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v · ˙ f = R w q -1 E × f G w R mulGrp R w
261 14 ad2antrr φ q E × F Word E F f F R Ring
262 19 a1i φ q E × F Word E F f F q -1 E × f V
263 25 ad3antrrr φ q E × F Word E F f F v q -1 E × f R Grp
264 191 ad2antrr φ q E × F Word E F f F v q -1 E × f G : Word E F
265 264 224 ffvelcdmd φ q E × F Word E F f F v q -1 E × f G v
266 1 24 263 265 227 mulgcld φ q E × F Word E F f F v q -1 E × f G v R 1 st q v B
267 50 ad2antrr φ q E × F Word E F f F finSupp 0 v Word E F G v
268 0zd φ q E × F Word E F f F 0
269 267 223 268 fmptssfisupp φ q E × F Word E F f F finSupp 0 v q -1 E × f G v
270 58 adantl φ q E × F Word E F f F y B 0 R y = 0 ˙
271 60 a1i φ q E × F Word E F f F 0 ˙ V
272 269 270 265 227 271 fsuppssov1 φ q E × F Word E F f F finSupp 0 ˙ v q -1 E × f G v R 1 st q v
273 1 3 2 261 262 230 266 272 gsummulc1 φ q E × F Word E F f F R v q -1 E × f G v R 1 st q v · ˙ f = R v q -1 E × f G v R 1 st q v · ˙ f
274 273 adantlr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v · ˙ f = R v q -1 E × f G v R 1 st q v · ˙ f
275 161 adantr φ q E × F Word E F f F R CMnd
276 89 ad3antrrr φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f G Fn Word E F
277 162 ad2antrr φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f Word E F V
278 0zd φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f 0
279 139 ad2antrr φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f q -1 E × f Word E F
280 simpr φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f v q -1 E × f u supp 0 G 2 nd q u -1 f
281 280 eldifad φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f v q -1 E × f
282 279 281 sseldd φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f v Word E F
283 eldif v q -1 E × f u supp 0 G 2 nd q u -1 f v q -1 E × f ¬ v u supp 0 G 2 nd q u -1 f
284 nfv u φ q E × F Word E F f F v supp 0 G
285 fvexd φ q E × F Word E F f F v supp 0 G u supp 0 G 2 nd q u V
286 eqid u supp 0 G 2 nd q u = u supp 0 G 2 nd q u
287 284 285 286 fnmptd φ q E × F Word E F f F v supp 0 G u supp 0 G 2 nd q u Fn supp 0 G
288 287 adantlr φ q E × F Word E F f F v q -1 E × f v supp 0 G u supp 0 G 2 nd q u Fn supp 0 G
289 simpr φ q E × F Word E F f F v q -1 E × f v supp 0 G v supp 0 G
290 2fveq3 u = v 2 nd q u = 2 nd q v
291 simpr φ q E × F Word E F f F v supp 0 G v supp 0 G
292 fvexd φ q E × F Word E F f F v supp 0 G 2 nd q v V
293 286 290 291 292 fvmptd3 φ q E × F Word E F f F v supp 0 G u supp 0 G 2 nd q u v = 2 nd q v
294 293 adantlr φ q E × F Word E F f F v q -1 E × f v supp 0 G u supp 0 G 2 nd q u v = 2 nd q v
295 241 ad3antrrr φ q E × F Word E F f F v q -1 E × f v supp 0 G q Fn Word E F
296 simplr φ q E × F Word E F f F v q -1 E × f v supp 0 G v q -1 E × f
297 295 296 244 syl2anc φ q E × F Word E F f F v q -1 E × f v supp 0 G q v E × f
298 297 246 syl φ q E × F Word E F f F v q -1 E × f v supp 0 G 2 nd q v f
299 294 298 eqeltrd φ q E × F Word E F f F v q -1 E × f v supp 0 G u supp 0 G 2 nd q u v f
300 288 289 299 elpreimad φ q E × F Word E F f F v q -1 E × f v supp 0 G v u supp 0 G 2 nd q u -1 f
301 300 stoic1a φ q E × F Word E F f F v q -1 E × f ¬ v u supp 0 G 2 nd q u -1 f ¬ v supp 0 G
302 301 anasss φ q E × F Word E F f F v q -1 E × f ¬ v u supp 0 G 2 nd q u -1 f ¬ v supp 0 G
303 283 302 sylan2b φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f ¬ v supp 0 G
304 282 303 eldifd φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f v Word E F supp 0 G
305 276 277 278 304 fvdifsupp φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f G v = 0
306 305 oveq1d φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f G v R mulGrp R v = 0 R mulGrp R v
307 172 ad3antrrr φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f mulGrp R Mnd
308 179 adantr φ q E × F Word E F f F Word E F Word B
309 223 308 sstrd φ q E × F Word E F f F q -1 E × f Word B
310 309 ssdifssd φ q E × F Word E F f F q -1 E × f u supp 0 G 2 nd q u -1 f Word B
311 310 sselda φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f v Word B
312 183 gsumwcl mulGrp R Mnd v Word B mulGrp R v B
313 307 311 312 syl2anc φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f mulGrp R v B
314 1 3 24 mulg0 mulGrp R v B 0 R mulGrp R v = 0 ˙
315 313 314 syl φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f 0 R mulGrp R v = 0 ˙
316 306 315 eqtrd φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f G v R mulGrp R v = 0 ˙
317 316 ralrimiva φ q E × F Word E F f F v q -1 E × f u supp 0 G 2 nd q u -1 f G v R mulGrp R v = 0 ˙
318 257 eqeq1d v = w G v R mulGrp R v = 0 ˙ G w R mulGrp R w = 0 ˙
319 318 cbvralvw v q -1 E × f u supp 0 G 2 nd q u -1 f G v R mulGrp R v = 0 ˙ w q -1 E × f u supp 0 G 2 nd q u -1 f G w R mulGrp R w = 0 ˙
320 2fveq3 u = w 2 nd q u = 2 nd q w
321 320 cbvmptv u supp 0 G 2 nd q u = w supp 0 G 2 nd q w
322 321 215 eqtr4i u supp 0 G 2 nd q u = v supp 0 G 2 nd q v
323 322 cnveqi u supp 0 G 2 nd q u -1 = v supp 0 G 2 nd q v -1
324 323 imaeq1i u supp 0 G 2 nd q u -1 f = v supp 0 G 2 nd q v -1 f
325 324 difeq2i q -1 E × f u supp 0 G 2 nd q u -1 f = q -1 E × f v supp 0 G 2 nd q v -1 f
326 325 raleqi w q -1 E × f u supp 0 G 2 nd q u -1 f G w R mulGrp R w = 0 ˙ w q -1 E × f v supp 0 G 2 nd q v -1 f G w R mulGrp R w = 0 ˙
327 319 326 bitri v q -1 E × f u supp 0 G 2 nd q u -1 f G v R mulGrp R v = 0 ˙ w q -1 E × f v supp 0 G 2 nd q v -1 f G w R mulGrp R w = 0 ˙
328 317 327 sylib φ q E × F Word E F f F w q -1 E × f v supp 0 G 2 nd q v -1 f G w R mulGrp R w = 0 ˙
329 328 r19.21bi φ q E × F Word E F f F w q -1 E × f v supp 0 G 2 nd q v -1 f G w R mulGrp R w = 0 ˙
330 189 adantr φ q E × F Word E F f F G supp 0 Fin
331 330 cnvimamptfin φ q E × F Word E F f F v supp 0 G 2 nd q v -1 f Fin
332 25 ad3antrrr φ q E × F Word E F f F w q -1 E × f R Grp
333 191 ad2antrr φ q E × F Word E F f F w q -1 E × f G : Word E F
334 223 sselda φ q E × F Word E F f F w q -1 E × f w Word E F
335 333 334 ffvelcdmd φ q E × F Word E F f F w q -1 E × f G w
336 172 ad3antrrr φ q E × F Word E F f F w q -1 E × f mulGrp R Mnd
337 309 sselda φ q E × F Word E F f F w q -1 E × f w Word B
338 336 337 184 syl2anc φ q E × F Word E F f F w q -1 E × f mulGrp R w B
339 1 24 332 335 338 mulgcld φ q E × F Word E F f F w q -1 E × f G w R mulGrp R w B
340 241 ad2antrr φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f q Fn Word E F
341 198 ad2antrr φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f G supp 0 Word E F
342 nfv w φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f
343 fvexd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f w supp 0 G 2 nd q w V
344 342 343 321 fnmptd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f u supp 0 G 2 nd q u Fn supp 0 G
345 elpreima u supp 0 G 2 nd q u Fn supp 0 G v u supp 0 G 2 nd q u -1 f v supp 0 G u supp 0 G 2 nd q u v f
346 345 simprbda u supp 0 G 2 nd q u Fn supp 0 G v u supp 0 G 2 nd q u -1 f v supp 0 G
347 344 346 sylancom φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f v supp 0 G
348 341 347 sseldd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f v Word E F
349 32 ad2antrr φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f q : Word E F E × F
350 349 348 ffvelcdmd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f q v E × F
351 1st2nd2 q v E × F q v = 1 st q v 2 nd q v
352 350 351 syl φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f q v = 1 st q v 2 nd q v
353 350 143 syl φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f 1 st q v E
354 347 293 syldan φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f u supp 0 G 2 nd q u v = 2 nd q v
355 345 simplbda u supp 0 G 2 nd q u Fn supp 0 G v u supp 0 G 2 nd q u -1 f u supp 0 G 2 nd q u v f
356 344 355 sylancom φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f u supp 0 G 2 nd q u v f
357 354 356 eqeltrrd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f 2 nd q v f
358 353 357 opelxpd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f 1 st q v 2 nd q v E × f
359 352 358 eqeltrd φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f q v E × f
360 340 348 359 elpreimad φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f v q -1 E × f
361 360 ex φ q E × F Word E F f F v u supp 0 G 2 nd q u -1 f v q -1 E × f
362 361 ssrdv φ q E × F Word E F f F u supp 0 G 2 nd q u -1 f q -1 E × f
363 324 362 eqsstrrid φ q E × F Word E F f F v supp 0 G 2 nd q v -1 f q -1 E × f
364 1 3 275 262 329 331 339 363 gsummptres2 φ q E × F Word E F f F R w q -1 E × f G w R mulGrp R w = R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
365 364 adantlr φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R w q -1 E × f G w R mulGrp R w = R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
366 260 274 365 3eqtr3d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v · ˙ f = R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
367 366 mpteq2dva φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w f F R v q -1 E × f G v R 1 st q v · ˙ f = f F R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
368 367 oveq2d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w R f F R v q -1 E × f G v R 1 st q v · ˙ f = R f F R w v supp 0 G 2 nd q v -1 f G w R mulGrp R w
369 218 219 368 3eqtr4d φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w X = R f F R v q -1 E × f G v R 1 st q v · ˙ f
370 159 369 jca φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w finSupp 0 ˙ f F R v q -1 E × f G v R 1 st q v X = R f F R v q -1 E × f G v R 1 st q v · ˙ f
371 65 79 370 rspcedvd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w p E F finSupp 0 ˙ p X = R f F p f · ˙ f
372 fveq2 a = q w 1 st a = 1 st q w
373 fveq2 a = q w 2 nd a = 2 nd q w
374 372 373 oveq12d a = q w 1 st a · ˙ 2 nd a = 1 st q w · ˙ 2 nd q w
375 374 eqeq2d a = q w mulGrp R w = 1 st a · ˙ 2 nd a mulGrp R w = 1 st q w · ˙ 2 nd q w
376 vex e V
377 vex f V
378 376 377 op1std a = e f 1 st a = e
379 376 377 op2ndd a = e f 2 nd a = f
380 378 379 oveq12d a = e f 1 st a · ˙ 2 nd a = e · ˙ f
381 380 eqeq2d a = e f mulGrp R w = 1 st a · ˙ 2 nd a mulGrp R w = e · ˙ f
382 simpllr φ w Word E F e E f F mulGrp R w = e · ˙ f e E
383 simplr φ w Word E F e E f F mulGrp R w = e · ˙ f f F
384 382 383 opelxpd φ w Word E F e E f F mulGrp R w = e · ˙ f e f E × F
385 simpr φ w Word E F e E f F mulGrp R w = e · ˙ f mulGrp R w = e · ˙ f
386 381 384 385 rspcedvdw φ w Word E F e E f F mulGrp R w = e · ˙ f a E × F mulGrp R w = 1 st a · ˙ 2 nd a
387 169 2 mgpplusg · ˙ = + mulGrp R
388 171 adantr φ w Word E F mulGrp R CMnd
389 169 subrgsubm E SubRing R E SubMnd mulGrp R
390 6 389 syl φ E SubMnd mulGrp R
391 390 adantr φ w Word E F E SubMnd mulGrp R
392 169 subrgsubm F SubRing R F SubMnd mulGrp R
393 7 392 syl φ F SubMnd mulGrp R
394 393 adantr φ w Word E F F SubMnd mulGrp R
395 simpr φ w Word E F w Word E F
396 387 388 391 394 395 gsumwun φ w Word E F e E f F mulGrp R w = e · ˙ f
397 386 396 r19.29vva φ w Word E F a E × F mulGrp R w = 1 st a · ˙ 2 nd a
398 375 30 27 397 ac6mapd φ q E × F Word E F w Word E F mulGrp R w = 1 st q w · ˙ 2 nd q w
399 371 398 r19.29a φ p E F finSupp 0 ˙ p X = R f F p f · ˙ f