Metamath Proof Explorer


Theorem elrgspnlem4

Description: Lemma for elrgspn . (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses elrgspn.b B = Base R
elrgspn.m M = mulGrp R
elrgspn.x · ˙ = R
elrgspn.n N = RingSpan R
elrgspn.f F = f Word A | finSupp 0 f
elrgspn.r φ R Ring
elrgspn.a φ A B
elrgspnlem1.1 S = ran g F R w Word A g w · ˙ M w
Assertion elrgspnlem4 φ N A = S

Proof

Step Hyp Ref Expression
1 elrgspn.b B = Base R
2 elrgspn.m M = mulGrp R
3 elrgspn.x · ˙ = R
4 elrgspn.n N = RingSpan R
5 elrgspn.f F = f Word A | finSupp 0 f
6 elrgspn.r φ R Ring
7 elrgspn.a φ A B
8 elrgspnlem1.1 S = ran g F R w Word A g w · ˙ M w
9 1 a1i φ B = Base R
10 4 a1i φ N = RingSpan R
11 eqidd φ N A = N A
12 6 9 7 10 11 rgspnval φ N A = t SubRing R | A t
13 sseq2 t = S A t A S
14 1 2 3 4 5 6 7 8 elrgspnlem2 φ S SubRing R
15 1 2 3 4 5 6 7 8 elrgspnlem3 φ A S
16 13 14 15 elrabd φ S t SubRing R | A t
17 intss1 S t SubRing R | A t t SubRing R | A t S
18 16 17 syl φ t SubRing R | A t S
19 simpr φ t SubRing R A t s S g F s = R w Word A g w · ˙ M w s = R w Word A g w · ˙ M w
20 eqidd φ t SubRing R A t g F g supp 0 = g supp 0
21 oveq1 f = g f supp 0 = g supp 0
22 21 eqeq1d f = g f supp 0 = g supp 0 g supp 0 = g supp 0
23 fveq1 f = g f w = g w
24 23 oveq1d f = g f w · ˙ M w = g w · ˙ M w
25 24 mpteq2dv f = g w Word A f w · ˙ M w = w Word A g w · ˙ M w
26 25 oveq2d f = g R w Word A f w · ˙ M w = R w Word A g w · ˙ M w
27 26 eleq1d f = g R w Word A f w · ˙ M w t R w Word A g w · ˙ M w t
28 22 27 imbi12d f = g f supp 0 = g supp 0 R w Word A f w · ˙ M w t g supp 0 = g supp 0 R w Word A g w · ˙ M w t
29 eqeq2 i = f supp 0 = i f supp 0 =
30 29 imbi1d i = f supp 0 = i R w Word A f w · ˙ M w t f supp 0 = R w Word A f w · ˙ M w t
31 30 ralbidv i = f F f supp 0 = i R w Word A f w · ˙ M w t f F f supp 0 = R w Word A f w · ˙ M w t
32 eqeq2 i = h f supp 0 = i f supp 0 = h
33 32 imbi1d i = h f supp 0 = i R w Word A f w · ˙ M w t f supp 0 = h R w Word A f w · ˙ M w t
34 33 ralbidv i = h f F f supp 0 = i R w Word A f w · ˙ M w t f F f supp 0 = h R w Word A f w · ˙ M w t
35 eqeq2 i = h x f supp 0 = i f supp 0 = h x
36 35 imbi1d i = h x f supp 0 = i R w Word A f w · ˙ M w t f supp 0 = h x R w Word A f w · ˙ M w t
37 36 ralbidv i = h x f F f supp 0 = i R w Word A f w · ˙ M w t f F f supp 0 = h x R w Word A f w · ˙ M w t
38 eqeq2 i = g supp 0 f supp 0 = i f supp 0 = g supp 0
39 38 imbi1d i = g supp 0 f supp 0 = i R w Word A f w · ˙ M w t f supp 0 = g supp 0 R w Word A f w · ˙ M w t
40 39 ralbidv i = g supp 0 f F f supp 0 = i R w Word A f w · ˙ M w t f F f supp 0 = g supp 0 R w Word A f w · ˙ M w t
41 eqid 0 R = 0 R
42 6 ringcmnd φ R CMnd
43 42 ad5antr φ t SubRing R A t g F f F f supp 0 = R CMnd
44 1 fvexi B V
45 44 a1i φ B V
46 45 7 ssexd φ A V
47 wrdexg A V Word A V
48 46 47 syl φ Word A V
49 48 ad5antr φ t SubRing R A t g F f F f supp 0 = Word A V
50 simp-4l φ t SubRing R A t g F f F φ
51 5 reqabi f F f Word A finSupp 0 f
52 51 simplbi f F f Word A
53 52 adantl φ t SubRing R A t g F f F f Word A
54 zex V
55 54 a1i φ V
56 55 48 elmapd φ f Word A f : Word A
57 56 biimpa φ f Word A f : Word A
58 50 53 57 syl2anc φ t SubRing R A t g F f F f : Word A
59 58 ffnd φ t SubRing R A t g F f F f Fn Word A
60 59 ad2antrr φ t SubRing R A t g F f F f supp 0 = w Word A f Fn Word A
61 49 adantr φ t SubRing R A t g F f F f supp 0 = w Word A Word A V
62 0zd φ t SubRing R A t g F f F f supp 0 = w Word A 0
63 simpr φ t SubRing R A t g F f F f supp 0 = w Word A w Word A
64 63 eldifad φ t SubRing R A t g F f F f supp 0 = w Word A w Word A
65 63 eldifbd φ t SubRing R A t g F f F f supp 0 = w Word A ¬ w
66 simplr φ t SubRing R A t g F f F f supp 0 = w Word A f supp 0 =
67 65 66 neleqtrrd φ t SubRing R A t g F f F f supp 0 = w Word A ¬ w supp 0 f
68 64 67 eldifd φ t SubRing R A t g F f F f supp 0 = w Word A w Word A supp 0 f
69 60 61 62 68 fvdifsupp φ t SubRing R A t g F f F f supp 0 = w Word A f w = 0
70 69 oveq1d φ t SubRing R A t g F f F f supp 0 = w Word A f w · ˙ M w = 0 · ˙ M w
71 2 ringmgp R Ring M Mnd
72 6 71 syl φ M Mnd
73 72 ad6antr φ t SubRing R A t g F f F f supp 0 = w Word A M Mnd
74 sswrd A B Word A Word B
75 7 74 syl φ Word A Word B
76 75 ad6antr φ t SubRing R A t g F f F f supp 0 = w Word A Word A Word B
77 76 64 sseldd φ t SubRing R A t g F f F f supp 0 = w Word A w Word B
78 2 1 mgpbas B = Base M
79 78 gsumwcl M Mnd w Word B M w B
80 73 77 79 syl2anc φ t SubRing R A t g F f F f supp 0 = w Word A M w B
81 1 41 3 mulg0 M w B 0 · ˙ M w = 0 R
82 80 81 syl φ t SubRing R A t g F f F f supp 0 = w Word A 0 · ˙ M w = 0 R
83 70 82 eqtrd φ t SubRing R A t g F f F f supp 0 = w Word A f w · ˙ M w = 0 R
84 0fi Fin
85 84 a1i φ t SubRing R A t g F f F f supp 0 = Fin
86 6 ringgrpd φ R Grp
87 86 ad6antr φ t SubRing R A t g F f F f supp 0 = w Word A R Grp
88 58 ad2antrr φ t SubRing R A t g F f F f supp 0 = w Word A f : Word A
89 simpr φ t SubRing R A t g F f F f supp 0 = w Word A w Word A
90 88 89 ffvelcdmd φ t SubRing R A t g F f F f supp 0 = w Word A f w
91 72 ad6antr φ t SubRing R A t g F f F f supp 0 = w Word A M Mnd
92 75 ad6antr φ t SubRing R A t g F f F f supp 0 = w Word A Word A Word B
93 92 89 sseldd φ t SubRing R A t g F f F f supp 0 = w Word A w Word B
94 91 93 79 syl2anc φ t SubRing R A t g F f F f supp 0 = w Word A M w B
95 1 3 87 90 94 mulgcld φ t SubRing R A t g F f F f supp 0 = w Word A f w · ˙ M w B
96 0ss Word A
97 96 a1i φ t SubRing R A t g F f F f supp 0 = Word A
98 1 41 43 49 83 85 95 97 gsummptres2 φ t SubRing R A t g F f F f supp 0 = R w Word A f w · ˙ M w = R w f w · ˙ M w
99 mpt0 w f w · ˙ M w =
100 99 a1i φ t SubRing R A t g F f F f supp 0 = w f w · ˙ M w =
101 100 oveq2d φ t SubRing R A t g F f F f supp 0 = R w f w · ˙ M w = R
102 41 gsum0 R = 0 R
103 102 a1i φ t SubRing R A t g F f F f supp 0 = R = 0 R
104 98 101 103 3eqtrd φ t SubRing R A t g F f F f supp 0 = R w Word A f w · ˙ M w = 0 R
105 subrgsubg t SubRing R t SubGrp R
106 41 subg0cl t SubGrp R 0 R t
107 105 106 syl t SubRing R 0 R t
108 107 adantl φ t SubRing R 0 R t
109 108 ad4antr φ t SubRing R A t g F f F f supp 0 = 0 R t
110 104 109 eqeltrd φ t SubRing R A t g F f F f supp 0 = R w Word A f w · ˙ M w t
111 110 ex φ t SubRing R A t g F f F f supp 0 = R w Word A f w · ˙ M w t
112 111 ralrimiva φ t SubRing R A t g F f F f supp 0 = R w Word A f w · ˙ M w t
113 42 ad7antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x R CMnd
114 48 ad7antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x Word A V
115 simp-5l φ t SubRing R A t h g supp 0 x supp 0 g h e F φ
116 breq1 f = e finSupp 0 f finSupp 0 e
117 116 5 elrab2 e F e Word A finSupp 0 e
118 117 simplbi e F e Word A
119 55 48 elmapd φ e Word A e : Word A
120 119 biimpa φ e Word A e : Word A
121 118 120 sylan2 φ e F e : Word A
122 115 121 sylancom φ t SubRing R A t h g supp 0 x supp 0 g h e F e : Word A
123 122 adantl3r φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e : Word A
124 123 ffnd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e Fn Word A
125 124 ad2antrr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e e Fn Word A
126 114 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e Word A V
127 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e 0
128 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e w Word A supp 0 e
129 125 126 127 128 fvdifsupp φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e e w = 0
130 129 oveq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e e w · ˙ M w = 0 · ˙ M w
131 72 ad8antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e M Mnd
132 75 ad8antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e Word A Word B
133 128 eldifad φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e w Word A
134 132 133 sseldd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e w Word B
135 131 134 79 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e M w B
136 135 81 syl φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e 0 · ˙ M w = 0 R
137 130 136 eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A supp 0 e e w · ˙ M w = 0 R
138 117 simprbi e F finSupp 0 e
139 138 ad2antlr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x finSupp 0 e
140 139 fsuppimpd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e supp 0 Fin
141 86 ad8antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A R Grp
142 123 ad2antrr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A e : Word A
143 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A w Word A
144 142 143 ffvelcdmd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A e w
145 72 ad8antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A M Mnd
146 75 ad7antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x Word A Word B
147 146 sselda φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A w Word B
148 145 147 79 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A M w B
149 1 3 141 144 148 mulgcld φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A e w · ˙ M w B
150 suppssdm e supp 0 dom e
151 123 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e : Word A
152 150 151 fssdm φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e supp 0 Word A
153 1 41 113 114 137 140 149 152 gsummptres2 φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x R w Word A e w · ˙ M w = R w e supp 0 e w · ˙ M w
154 153 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w = R w e supp 0 e w · ˙ M w
155 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e supp 0 = h x
156 155 mpteq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x w supp 0 e e w · ˙ M w = w h x e w · ˙ M w
157 156 oveq2d φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w e supp 0 e w · ˙ M w = R w h x e w · ˙ M w
158 eqid + R = + R
159 breq1 f = g finSupp 0 f finSupp 0 g
160 159 5 elrab2 g F g Word A finSupp 0 g
161 160 simprbi g F finSupp 0 g
162 161 adantl φ t SubRing R A t g F finSupp 0 g
163 162 fsuppimpd φ t SubRing R A t g F g supp 0 Fin
164 163 ad4antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x g supp 0 Fin
165 simp-4r φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x h g supp 0
166 164 165 ssfid φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x h Fin
167 86 ad8antr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h R Grp
168 151 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h e : Word A
169 suppssdm g supp 0 dom g
170 simp-7l φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x φ
171 simp-5r φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x g F
172 160 simplbi g F g Word A
173 55 48 elmapd φ g Word A g : Word A
174 173 biimpa φ g Word A g : Word A
175 172 174 sylan2 φ g F g : Word A
176 170 171 175 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x g : Word A
177 169 176 fssdm φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x g supp 0 Word A
178 165 177 sstrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x h Word A
179 178 sselda φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h w Word A
180 168 179 ffvelcdmd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h e w
181 179 148 syldan φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h M w B
182 1 3 167 180 181 mulgcld φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h e w · ˙ M w B
183 simpllr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x x supp 0 g h
184 183 eldifbd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x ¬ x h
185 170 86 syl φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x R Grp
186 183 eldifad φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x x supp 0 g
187 177 186 sseldd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x x Word A
188 151 187 ffvelcdmd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e x
189 170 72 syl φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x M Mnd
190 146 187 sseldd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x x Word B
191 78 gsumwcl M Mnd x Word B M x B
192 189 190 191 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x M x B
193 1 3 185 188 192 mulgcld φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e x · ˙ M x B
194 fveq2 w = x e w = e x
195 oveq2 w = x M w = M x
196 194 195 oveq12d w = x e w · ˙ M w = e x · ˙ M x
197 1 158 113 166 182 183 184 193 196 gsumunsn φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x R w h x e w · ˙ M w = R w h e w · ˙ M w + R e x · ˙ M x
198 197 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w h x e w · ˙ M w = R w h e w · ˙ M w + R e x · ˙ M x
199 154 157 198 3eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w = R w h e w · ˙ M w + R e x · ˙ M x
200 105 ad8antlr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x t SubGrp R
201 124 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e Fn Word A
202 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x 0
203 201 187 202 fmptunsnop φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A if y = x 0 e y = e Word A x x 0
204 203 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y Word A if y = x 0 e y = e Word A x x 0
205 204 fveq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y Word A if y = x 0 e y w = e Word A x x 0 w
206 eqid y Word A if y = x 0 e y = y Word A if y = x 0 e y
207 eqidd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w y = x 0 = 0
208 201 ad3antrrr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x e Fn Word A
209 114 ad3antrrr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x Word A V
210 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x 0
211 simplr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x y = w
212 simpllr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x w Word A h
213 212 eldifad φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x w Word A
214 211 213 eqeltrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x y Word A
215 simp-4r φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x e supp 0 = h x
216 212 eldifbd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x ¬ w h
217 211 216 eqneltrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x ¬ y h
218 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x ¬ y = x
219 218 neqned φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x y x
220 nelsn y x ¬ y x
221 219 220 syl φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x ¬ y x
222 nelun e supp 0 = h x ¬ y supp 0 e ¬ y h ¬ y x
223 222 biimpar e supp 0 = h x ¬ y h ¬ y x ¬ y supp 0 e
224 215 217 221 223 syl12anc φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x ¬ y supp 0 e
225 214 224 eldifd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x y Word A supp 0 e
226 208 209 210 225 fvdifsupp φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w ¬ y = x e y = 0
227 207 226 ifeqda φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y = w if y = x 0 e y = 0
228 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h w Word A h
229 228 eldifad φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h w Word A
230 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h 0
231 206 227 229 230 fvmptd2 φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h y Word A if y = x 0 e y w = 0
232 205 231 eqtr3d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h e Word A x x 0 w = 0
233 232 oveq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h e Word A x x 0 w · ˙ M w = 0 · ˙ M w
234 229 148 syldan φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h M w B
235 234 81 syl φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h 0 · ˙ M w = 0 R
236 233 235 eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A h e Word A x x 0 w · ˙ M w = 0 R
237 203 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A y Word A if y = x 0 e y = e Word A x x 0
238 237 fveq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A y Word A if y = x 0 e y w = e Word A x x 0 w
239 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A y = x 0
240 151 ad2antrr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A ¬ y = x e : Word A
241 simplr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A ¬ y = x y Word A
242 240 241 ffvelcdmd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A ¬ y = x e y
243 239 242 ifclda φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A if y = x 0 e y
244 243 fmpttd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x y Word A if y = x 0 e y : Word A
245 244 ffvelcdmda φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A y Word A if y = x 0 e y w
246 238 245 eqeltrrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A e Word A x x 0 w
247 1 3 141 246 148 mulgcld φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w Word A e Word A x x 0 w · ˙ M w B
248 1 41 113 114 236 166 247 178 gsummptres2 φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x R w Word A e Word A x x 0 w · ˙ M w = R w h e Word A x x 0 w · ˙ M w
249 248 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e Word A x x 0 w · ˙ M w = R w h e Word A x x 0 w · ˙ M w
250 203 adantr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y Word A if y = x 0 e y = e Word A x x 0
251 250 fveq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y Word A if y = x 0 e y w = e Word A x x 0 w
252 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w y = w
253 simplr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w w h
254 252 253 eqeltrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w y h
255 184 ad2antrr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w ¬ x h
256 nelneq y h ¬ x h ¬ y = x
257 254 255 256 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w ¬ y = x
258 257 iffalsed φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w if y = x 0 e y = e y
259 252 fveq2d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w e y = e w
260 258 259 eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y = w if y = x 0 e y = e w
261 206 260 179 180 fvmptd2 φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h y Word A if y = x 0 e y w = e w
262 251 261 eqtr3d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h e Word A x x 0 w = e w
263 262 oveq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h e Word A x x 0 w · ˙ M w = e w · ˙ M w
264 263 mpteq2dva φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x w h e Word A x x 0 w · ˙ M w = w h e w · ˙ M w
265 264 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x w h e Word A x x 0 w · ˙ M w = w h e w · ˙ M w
266 265 oveq2d φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w h e Word A x x 0 w · ˙ M w = R w h e w · ˙ M w
267 249 266 eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e Word A x x 0 w · ˙ M w = R w h e w · ˙ M w
268 simplr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e F
269 268 resexd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e Word A x V
270 snex x 0 V
271 270 a1i φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x x 0 V
272 269 271 202 suppun2 φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e Word A x x 0 supp 0 = supp 0 e Word A x supp 0 x 0
273 114 202 201 fdifsupp φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e Word A x supp 0 = supp 0 e x
274 simpr φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e supp 0 = h x
275 274 difeq1d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x supp 0 e x = h x x
276 disjsn h x = ¬ x h
277 undif5 h x = h x x = h
278 276 277 sylbir ¬ x h h x x = h
279 184 278 syl φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x h x x = h
280 273 275 279 3eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e Word A x supp 0 = h
281 vex x V
282 c0ex 0 V
283 281 282 xpsn x × 0 = x 0
284 283 oveq1i x × 0 supp 0 = x 0 supp 0
285 fczsupp0 x × 0 supp 0 =
286 284 285 eqtr3i x 0 supp 0 =
287 286 a1i φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x x 0 supp 0 =
288 280 287 uneq12d φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x supp 0 e Word A x supp 0 x 0 = h
289 un0 h = h
290 289 a1i φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x h = h
291 272 288 290 3eqtrd φ t SubRing R A t g F h g supp 0 x supp 0 g h e F e supp 0 = h x e Word A x x 0 supp 0 = h
292 291 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 supp 0 = h
293 oveq1 f = e Word A x x 0 f supp 0 = e Word A x x 0 supp 0
294 293 eqeq1d f = e Word A x x 0 f supp 0 = h e Word A x x 0 supp 0 = h
295 fveq1 f = e Word A x x 0 f w = e Word A x x 0 w
296 295 oveq1d f = e Word A x x 0 f w · ˙ M w = e Word A x x 0 w · ˙ M w
297 296 mpteq2dv f = e Word A x x 0 w Word A f w · ˙ M w = w Word A e Word A x x 0 w · ˙ M w
298 297 oveq2d f = e Word A x x 0 R w Word A f w · ˙ M w = R w Word A e Word A x x 0 w · ˙ M w
299 298 eleq1d f = e Word A x x 0 R w Word A f w · ˙ M w t R w Word A e Word A x x 0 w · ˙ M w t
300 294 299 imbi12d f = e Word A x x 0 f supp 0 = h R w Word A f w · ˙ M w t e Word A x x 0 supp 0 = h R w Word A e Word A x x 0 w · ˙ M w t
301 simpllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x f F f supp 0 = h R w Word A f w · ˙ M w t
302 breq1 f = e Word A x x 0 finSupp 0 f finSupp 0 e Word A x x 0
303 54 a1i φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x V
304 114 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x Word A V
305 203 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A if y = x 0 e y = e Word A x x 0
306 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A y = x 0
307 simp-10l φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A ¬ y = x φ
308 simp-4r φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A ¬ y = x e F
309 307 308 121 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A ¬ y = x e : Word A
310 simplr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A ¬ y = x y Word A
311 309 310 ffvelcdmd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A ¬ y = x e y
312 306 311 ifclda φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A if y = x 0 e y
313 312 fmpttd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x y Word A if y = x 0 e y : Word A
314 305 313 feq1dd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 : Word A
315 303 304 314 elmapdd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 Word A
316 0zd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x 0
317 314 ffund φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x Fun e Word A x x 0
318 166 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x h Fin
319 292 318 eqeltrd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 supp 0 Fin
320 315 316 317 319 isfsuppd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x finSupp 0 e Word A x x 0
321 302 315 320 elrabd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 f Word A | finSupp 0 f
322 321 5 eleqtrrdi φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 F
323 300 301 322 rspcdva φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e Word A x x 0 supp 0 = h R w Word A e Word A x x 0 w · ˙ M w t
324 292 323 mpd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e Word A x x 0 w · ˙ M w t
325 267 324 eqeltrrd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w h e w · ˙ M w t
326 86 ad8antr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R Grp
327 2 subrgsubm t SubRing R t SubMnd M
328 327 ad8antlr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x t SubMnd M
329 sswrd A t Word A Word t
330 329 ad7antlr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x Word A Word t
331 187 adantllr φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x x Word A
332 330 331 sseldd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x x Word t
333 gsumwsubmcl t SubMnd M x Word t M x t
334 328 332 333 syl2anc φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x M x t
335 123 ad4ant13 φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e : Word A
336 335 331 ffvelcdmd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e x
337 1 3 326 334 200 336 subgmulgcld φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x e x · ˙ M x t
338 158 200 325 337 subgcld φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w h e w · ˙ M w + R e x · ˙ M x t
339 199 338 eqeltrd φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w t
340 339 ex φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w t
341 340 ralrimiva φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w t
342 341 ex φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w t
343 342 anasss φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t e F e supp 0 = h x R w Word A e w · ˙ M w t
344 oveq1 e = f e supp 0 = f supp 0
345 344 eqeq1d e = f e supp 0 = h x f supp 0 = h x
346 fveq1 e = f e w = f w
347 346 oveq1d e = f e w · ˙ M w = f w · ˙ M w
348 347 mpteq2dv e = f w Word A e w · ˙ M w = w Word A f w · ˙ M w
349 348 oveq2d e = f R w Word A e w · ˙ M w = R w Word A f w · ˙ M w
350 349 eleq1d e = f R w Word A e w · ˙ M w t R w Word A f w · ˙ M w t
351 345 350 imbi12d e = f e supp 0 = h x R w Word A e w · ˙ M w t f supp 0 = h x R w Word A f w · ˙ M w t
352 351 cbvralvw e F e supp 0 = h x R w Word A e w · ˙ M w t f F f supp 0 = h x R w Word A f w · ˙ M w t
353 343 352 imbitrdi φ t SubRing R A t g F h g supp 0 x supp 0 g h f F f supp 0 = h R w Word A f w · ˙ M w t f F f supp 0 = h x R w Word A f w · ˙ M w t
354 31 34 37 40 112 353 163 findcard2d φ t SubRing R A t g F f F f supp 0 = g supp 0 R w Word A f w · ˙ M w t
355 simpr φ t SubRing R A t g F g F
356 28 354 355 rspcdva φ t SubRing R A t g F g supp 0 = g supp 0 R w Word A g w · ˙ M w t
357 20 356 mpd φ t SubRing R A t g F R w Word A g w · ˙ M w t
358 357 ad4ant13 φ t SubRing R A t s S g F s = R w Word A g w · ˙ M w R w Word A g w · ˙ M w t
359 19 358 eqeltrd φ t SubRing R A t s S g F s = R w Word A g w · ˙ M w s t
360 eqid g F R w Word A g w · ˙ M w = g F R w Word A g w · ˙ M w
361 8 eleq2i s S s ran g F R w Word A g w · ˙ M w
362 361 biimpi s S s ran g F R w Word A g w · ˙ M w
363 362 adantl φ t SubRing R A t s S s ran g F R w Word A g w · ˙ M w
364 360 363 elrnmpt2d φ t SubRing R A t s S g F s = R w Word A g w · ˙ M w
365 359 364 r19.29a φ t SubRing R A t s S s t
366 365 ex φ t SubRing R A t s S s t
367 366 ssrdv φ t SubRing R A t S t
368 367 ex φ t SubRing R A t S t
369 368 ralrimiva φ t SubRing R A t S t
370 ssintrab S t SubRing R | A t t SubRing R A t S t
371 369 370 sylibr φ S t SubRing R | A t
372 18 371 eqssd φ t SubRing R | A t = S
373 12 372 eqtrd φ N A = S