Step |
Hyp |
Ref |
Expression |
1 |
|
elrgspn.b |
|
2 |
|
elrgspn.m |
|
3 |
|
elrgspn.x |
|
4 |
|
elrgspn.n |
|
5 |
|
elrgspn.f |
|
6 |
|
elrgspn.r |
|
7 |
|
elrgspn.a |
|
8 |
|
elrgspnlem1.1 |
|
9 |
|
eqid |
|
10 |
|
fveq1 |
|
11 |
10
|
oveq1d |
|
12 |
11
|
mpteq2dv |
|
13 |
12
|
oveq2d |
|
14 |
13
|
eqeq2d |
|
15 |
|
breq1 |
|
16 |
|
zex |
|
17 |
16
|
a1i |
|
18 |
1
|
fvexi |
|
19 |
18
|
a1i |
|
20 |
19 7
|
ssexd |
|
21 |
|
wrdexg |
|
22 |
20 21
|
syl |
|
23 |
22
|
adantr |
|
24 |
|
1zzd |
|
25 |
|
0zd |
|
26 |
24 25
|
ifclda |
|
27 |
26
|
fmpttd |
|
28 |
17 23 27
|
elmapdd |
|
29 |
28
|
elexd |
|
30 |
27
|
ffund |
|
31 |
|
0zd |
|
32 |
|
snfi |
|
33 |
32
|
a1i |
|
34 |
|
eldifsni |
|
35 |
34
|
adantl |
|
36 |
35
|
neneqd |
|
37 |
36
|
iffalsed |
|
38 |
37 23
|
suppss2 |
|
39 |
|
suppssfifsupp |
|
40 |
29 30 31 33 38 39
|
syl32anc |
|
41 |
15 28 40
|
elrabd |
|
42 |
41 5
|
eleqtrrdi |
|
43 |
|
eqeq2 |
|
44 |
|
eqeq2 |
|
45 |
|
eqid |
|
46 |
|
simpr |
|
47 |
|
simplr |
|
48 |
46 47
|
eqtrd |
|
49 |
48
|
iftrued |
|
50 |
|
simplr |
|
51 |
|
1zzd |
|
52 |
45 49 50 51
|
fvmptd2 |
|
53 |
|
simpr |
|
54 |
53
|
oveq2d |
|
55 |
7
|
sselda |
|
56 |
55
|
ad2antrr |
|
57 |
2 1
|
mgpbas |
|
58 |
57
|
gsumws1 |
|
59 |
56 58
|
syl |
|
60 |
54 59
|
eqtrd |
|
61 |
52 60
|
oveq12d |
|
62 |
1 3
|
mulg1 |
|
63 |
56 62
|
syl |
|
64 |
61 63
|
eqtrd |
|
65 |
|
eqeq1 |
|
66 |
65
|
notbid |
|
67 |
66
|
biimparc |
|
68 |
67
|
adantll |
|
69 |
68
|
iffalsed |
|
70 |
|
simplr |
|
71 |
|
0zd |
|
72 |
45 69 70 71
|
fvmptd2 |
|
73 |
72
|
oveq1d |
|
74 |
2
|
ringmgp |
|
75 |
6 74
|
syl |
|
76 |
75
|
ad3antrrr |
|
77 |
|
sswrd |
|
78 |
7 77
|
syl |
|
79 |
78
|
adantr |
|
80 |
79
|
sselda |
|
81 |
80
|
adantr |
|
82 |
57
|
gsumwcl |
|
83 |
76 81 82
|
syl2anc |
|
84 |
|
eqid |
|
85 |
1 84 3
|
mulg0 |
|
86 |
83 85
|
syl |
|
87 |
73 86
|
eqtrd |
|
88 |
43 44 64 87
|
ifbothda |
|
89 |
88
|
mpteq2dva |
|
90 |
89
|
oveq2d |
|
91 |
|
ringmnd |
|
92 |
6 91
|
syl |
|
93 |
92
|
adantr |
|
94 |
|
simpr |
|
95 |
94
|
s1cld |
|
96 |
|
eqid |
|
97 |
7 1
|
sseqtrdi |
|
98 |
97
|
sselda |
|
99 |
84 93 23 95 96 98
|
gsummptif1n0 |
|
100 |
90 99
|
eqtr2d |
|
101 |
14 42 100
|
rspcedvdw |
|
102 |
9 101 94
|
elrnmptd |
|
103 |
102 8
|
eleqtrrdi |
|
104 |
103
|
ex |
|
105 |
104
|
ssrdv |
|