Step |
Hyp |
Ref |
Expression |
1 |
|
elrgspn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
elrgspn.m |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
3 |
|
elrgspn.x |
⊢ · = ( .g ‘ 𝑅 ) |
4 |
|
elrgspn.n |
⊢ 𝑁 = ( RingSpan ‘ 𝑅 ) |
5 |
|
elrgspn.f |
⊢ 𝐹 = { 𝑓 ∈ ( ℤ ↑m Word 𝐴 ) ∣ 𝑓 finSupp 0 } |
6 |
|
elrgspn.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
elrgspn.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
8 |
|
elrgspnlem1.1 |
⊢ 𝑆 = ran ( 𝑔 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
9 |
|
eqid |
⊢ ( 𝑔 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) = ( 𝑔 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
10 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) → ( 𝑔 ‘ 𝑤 ) = ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) ) |
11 |
10
|
oveq1d |
⊢ ( 𝑔 = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) → ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑔 = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) → ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝑔 = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑔 = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) → ( 𝑥 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ↔ 𝑥 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) |
15 |
|
breq1 |
⊢ ( 𝑓 = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) → ( 𝑓 finSupp 0 ↔ ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) finSupp 0 ) ) |
16 |
|
zex |
⊢ ℤ ∈ V |
17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ℤ ∈ V ) |
18 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
20 |
19 7
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
21 |
|
wrdexg |
⊢ ( 𝐴 ∈ V → Word 𝐴 ∈ V ) |
22 |
20 21
|
syl |
⊢ ( 𝜑 → Word 𝐴 ∈ V ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Word 𝐴 ∈ V ) |
24 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ Word 𝐴 ) ∧ 𝑣 = 〈“ 𝑥 ”〉 ) → 1 ∈ ℤ ) |
25 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ Word 𝐴 ) ∧ ¬ 𝑣 = 〈“ 𝑥 ”〉 ) → 0 ∈ ℤ ) |
26 |
24 25
|
ifclda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ Word 𝐴 ) → if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ∈ ℤ ) |
27 |
26
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) : Word 𝐴 ⟶ ℤ ) |
28 |
17 23 27
|
elmapdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ∈ ( ℤ ↑m Word 𝐴 ) ) |
29 |
28
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ∈ V ) |
30 |
27
|
ffund |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Fun ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ) |
31 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ ℤ ) |
32 |
|
snfi |
⊢ { 〈“ 𝑥 ”〉 } ∈ Fin |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → { 〈“ 𝑥 ”〉 } ∈ Fin ) |
34 |
|
eldifsni |
⊢ ( 𝑣 ∈ ( Word 𝐴 ∖ { 〈“ 𝑥 ”〉 } ) → 𝑣 ≠ 〈“ 𝑥 ”〉 ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( Word 𝐴 ∖ { 〈“ 𝑥 ”〉 } ) ) → 𝑣 ≠ 〈“ 𝑥 ”〉 ) |
36 |
35
|
neneqd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( Word 𝐴 ∖ { 〈“ 𝑥 ”〉 } ) ) → ¬ 𝑣 = 〈“ 𝑥 ”〉 ) |
37 |
36
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑣 ∈ ( Word 𝐴 ∖ { 〈“ 𝑥 ”〉 } ) ) → if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) = 0 ) |
38 |
37 23
|
suppss2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) supp 0 ) ⊆ { 〈“ 𝑥 ”〉 } ) |
39 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ∈ V ∧ Fun ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ∧ 0 ∈ ℤ ) ∧ ( { 〈“ 𝑥 ”〉 } ∈ Fin ∧ ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) supp 0 ) ⊆ { 〈“ 𝑥 ”〉 } ) ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) finSupp 0 ) |
40 |
29 30 31 33 38 39
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) finSupp 0 ) |
41 |
15 28 40
|
elrabd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ∈ { 𝑓 ∈ ( ℤ ↑m Word 𝐴 ) ∣ 𝑓 finSupp 0 } ) |
42 |
41 5
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ∈ 𝐹 ) |
43 |
|
eqeq2 |
⊢ ( 𝑥 = if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) → ( ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = 𝑥 ↔ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
44 |
|
eqeq2 |
⊢ ( ( 0g ‘ 𝑅 ) = if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) → ( ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( 0g ‘ 𝑅 ) ↔ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
45 |
|
eqid |
⊢ ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) = ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) |
46 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) ∧ 𝑣 = 𝑤 ) → 𝑣 = 𝑤 ) |
47 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) ∧ 𝑣 = 𝑤 ) → 𝑤 = 〈“ 𝑥 ”〉 ) |
48 |
46 47
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) ∧ 𝑣 = 𝑤 ) → 𝑣 = 〈“ 𝑥 ”〉 ) |
49 |
48
|
iftrued |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) ∧ 𝑣 = 𝑤 ) → if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) = 1 ) |
50 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → 𝑤 ∈ Word 𝐴 ) |
51 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → 1 ∈ ℤ ) |
52 |
45 49 50 51
|
fvmptd2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) = 1 ) |
53 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → 𝑤 = 〈“ 𝑥 ”〉 ) |
54 |
53
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( 𝑀 Σg 𝑤 ) = ( 𝑀 Σg 〈“ 𝑥 ”〉 ) ) |
55 |
7
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → 𝑥 ∈ 𝐵 ) |
57 |
2 1
|
mgpbas |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
58 |
57
|
gsumws1 |
⊢ ( 𝑥 ∈ 𝐵 → ( 𝑀 Σg 〈“ 𝑥 ”〉 ) = 𝑥 ) |
59 |
56 58
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( 𝑀 Σg 〈“ 𝑥 ”〉 ) = 𝑥 ) |
60 |
54 59
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( 𝑀 Σg 𝑤 ) = 𝑥 ) |
61 |
52 60
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( 1 · 𝑥 ) ) |
62 |
1 3
|
mulg1 |
⊢ ( 𝑥 ∈ 𝐵 → ( 1 · 𝑥 ) = 𝑥 ) |
63 |
56 62
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( 1 · 𝑥 ) = 𝑥 ) |
64 |
61 63
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ 𝑤 = 〈“ 𝑥 ”〉 ) → ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = 𝑥 ) |
65 |
|
eqeq1 |
⊢ ( 𝑣 = 𝑤 → ( 𝑣 = 〈“ 𝑥 ”〉 ↔ 𝑤 = 〈“ 𝑥 ”〉 ) ) |
66 |
65
|
notbid |
⊢ ( 𝑣 = 𝑤 → ( ¬ 𝑣 = 〈“ 𝑥 ”〉 ↔ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) ) |
67 |
66
|
biimparc |
⊢ ( ( ¬ 𝑤 = 〈“ 𝑥 ”〉 ∧ 𝑣 = 𝑤 ) → ¬ 𝑣 = 〈“ 𝑥 ”〉 ) |
68 |
67
|
adantll |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) ∧ 𝑣 = 𝑤 ) → ¬ 𝑣 = 〈“ 𝑥 ”〉 ) |
69 |
68
|
iffalsed |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) ∧ 𝑣 = 𝑤 ) → if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) = 0 ) |
70 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → 𝑤 ∈ Word 𝐴 ) |
71 |
|
0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → 0 ∈ ℤ ) |
72 |
45 69 70 71
|
fvmptd2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) = 0 ) |
73 |
72
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( 0 · ( 𝑀 Σg 𝑤 ) ) ) |
74 |
2
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → 𝑀 ∈ Mnd ) |
75 |
6 74
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
76 |
75
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → 𝑀 ∈ Mnd ) |
77 |
|
sswrd |
⊢ ( 𝐴 ⊆ 𝐵 → Word 𝐴 ⊆ Word 𝐵 ) |
78 |
7 77
|
syl |
⊢ ( 𝜑 → Word 𝐴 ⊆ Word 𝐵 ) |
79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Word 𝐴 ⊆ Word 𝐵 ) |
80 |
79
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) → 𝑤 ∈ Word 𝐵 ) |
81 |
80
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → 𝑤 ∈ Word 𝐵 ) |
82 |
57
|
gsumwcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑤 ∈ Word 𝐵 ) → ( 𝑀 Σg 𝑤 ) ∈ 𝐵 ) |
83 |
76 81 82
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → ( 𝑀 Σg 𝑤 ) ∈ 𝐵 ) |
84 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
85 |
1 84 3
|
mulg0 |
⊢ ( ( 𝑀 Σg 𝑤 ) ∈ 𝐵 → ( 0 · ( 𝑀 Σg 𝑤 ) ) = ( 0g ‘ 𝑅 ) ) |
86 |
83 85
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → ( 0 · ( 𝑀 Σg 𝑤 ) ) = ( 0g ‘ 𝑅 ) ) |
87 |
73 86
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) ∧ ¬ 𝑤 = 〈“ 𝑥 ”〉 ) → ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = ( 0g ‘ 𝑅 ) ) |
88 |
43 44 64 87
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑤 ∈ Word 𝐴 ) → ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) = if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) |
89 |
88
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑤 ∈ Word 𝐴 ↦ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
90 |
89
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) ) |
91 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
92 |
6 91
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑅 ∈ Mnd ) |
94 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
95 |
94
|
s1cld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 〈“ 𝑥 ”〉 ∈ Word 𝐴 ) |
96 |
|
eqid |
⊢ ( 𝑤 ∈ Word 𝐴 ↦ if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑤 ∈ Word 𝐴 ↦ if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) |
97 |
7 1
|
sseqtrdi |
⊢ ( 𝜑 → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
98 |
97
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
99 |
84 93 23 95 96 98
|
gsummptif1n0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ if ( 𝑤 = 〈“ 𝑥 ”〉 , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) = 𝑥 ) |
100 |
90 99
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( ( 𝑣 ∈ Word 𝐴 ↦ if ( 𝑣 = 〈“ 𝑥 ”〉 , 1 , 0 ) ) ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
101 |
14 42 100
|
rspcedvdw |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑔 ∈ 𝐹 𝑥 = ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) |
102 |
9 101 94
|
elrnmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ran ( 𝑔 ∈ 𝐹 ↦ ( 𝑅 Σg ( 𝑤 ∈ Word 𝐴 ↦ ( ( 𝑔 ‘ 𝑤 ) · ( 𝑀 Σg 𝑤 ) ) ) ) ) ) |
103 |
102 8
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑆 ) |
104 |
103
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑆 ) ) |
105 |
104
|
ssrdv |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |