Metamath Proof Explorer


Theorem eulerpartlemf

Description: Lemma for eulerpart : Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
Assertion eulerpartlemf ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝐴𝑡 ) = 0 )

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
5 eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
6 eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
7 eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
8 eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
9 eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
10 eldif ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) ↔ ( 𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽 ) )
11 breq2 ( 𝑧 = 𝑡 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑡 ) )
12 11 notbid ( 𝑧 = 𝑡 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑡 ) )
13 12 4 elrab2 ( 𝑡𝐽 ↔ ( 𝑡 ∈ ℕ ∧ ¬ 2 ∥ 𝑡 ) )
14 13 simplbi2 ( 𝑡 ∈ ℕ → ( ¬ 2 ∥ 𝑡𝑡𝐽 ) )
15 14 con1d ( 𝑡 ∈ ℕ → ( ¬ 𝑡𝐽 → 2 ∥ 𝑡 ) )
16 15 imp ( ( 𝑡 ∈ ℕ ∧ ¬ 𝑡𝐽 ) → 2 ∥ 𝑡 )
17 10 16 sylbi ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) → 2 ∥ 𝑡 )
18 17 adantl ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → 2 ∥ 𝑡 )
19 18 adantr ( ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴𝑡 ) ∈ ℕ ) → 2 ∥ 𝑡 )
20 simpll ( ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴𝑡 ) ∈ ℕ ) → 𝐴 ∈ ( 𝑇𝑅 ) )
21 eldifi ( 𝑡 ∈ ( ℕ ∖ 𝐽 ) → 𝑡 ∈ ℕ )
22 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ( 𝐴 ∈ ( 𝑇𝑅 ) ↔ ( 𝐴 ∈ ( ℕ0m ℕ ) ∧ ( 𝐴 “ ℕ ) ∈ Fin ∧ ( 𝐴 “ ℕ ) ⊆ 𝐽 ) )
23 22 simp1bi ( 𝐴 ∈ ( 𝑇𝑅 ) → 𝐴 ∈ ( ℕ0m ℕ ) )
24 elmapi ( 𝐴 ∈ ( ℕ0m ℕ ) → 𝐴 : ℕ ⟶ ℕ0 )
25 23 24 syl ( 𝐴 ∈ ( 𝑇𝑅 ) → 𝐴 : ℕ ⟶ ℕ0 )
26 ffn ( 𝐴 : ℕ ⟶ ℕ0𝐴 Fn ℕ )
27 elpreima ( 𝐴 Fn ℕ → ( 𝑡 ∈ ( 𝐴 “ ℕ ) ↔ ( 𝑡 ∈ ℕ ∧ ( 𝐴𝑡 ) ∈ ℕ ) ) )
28 25 26 27 3syl ( 𝐴 ∈ ( 𝑇𝑅 ) → ( 𝑡 ∈ ( 𝐴 “ ℕ ) ↔ ( 𝑡 ∈ ℕ ∧ ( 𝐴𝑡 ) ∈ ℕ ) ) )
29 28 baibd ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ℕ ) → ( 𝑡 ∈ ( 𝐴 “ ℕ ) ↔ ( 𝐴𝑡 ) ∈ ℕ ) )
30 21 29 sylan2 ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝑡 ∈ ( 𝐴 “ ℕ ) ↔ ( 𝐴𝑡 ) ∈ ℕ ) )
31 30 biimpar ( ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴𝑡 ) ∈ ℕ ) → 𝑡 ∈ ( 𝐴 “ ℕ ) )
32 22 simp3bi ( 𝐴 ∈ ( 𝑇𝑅 ) → ( 𝐴 “ ℕ ) ⊆ 𝐽 )
33 32 sselda ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( 𝐴 “ ℕ ) ) → 𝑡𝐽 )
34 13 simprbi ( 𝑡𝐽 → ¬ 2 ∥ 𝑡 )
35 33 34 syl ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( 𝐴 “ ℕ ) ) → ¬ 2 ∥ 𝑡 )
36 20 31 35 syl2anc ( ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) ∧ ( 𝐴𝑡 ) ∈ ℕ ) → ¬ 2 ∥ 𝑡 )
37 19 36 pm2.65da ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ¬ ( 𝐴𝑡 ) ∈ ℕ )
38 25 adantr ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → 𝐴 : ℕ ⟶ ℕ0 )
39 21 adantl ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → 𝑡 ∈ ℕ )
40 38 39 ffvelrnd ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝐴𝑡 ) ∈ ℕ0 )
41 elnn0 ( ( 𝐴𝑡 ) ∈ ℕ0 ↔ ( ( 𝐴𝑡 ) ∈ ℕ ∨ ( 𝐴𝑡 ) = 0 ) )
42 40 41 sylib ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( ( 𝐴𝑡 ) ∈ ℕ ∨ ( 𝐴𝑡 ) = 0 ) )
43 orel1 ( ¬ ( 𝐴𝑡 ) ∈ ℕ → ( ( ( 𝐴𝑡 ) ∈ ℕ ∨ ( 𝐴𝑡 ) = 0 ) → ( 𝐴𝑡 ) = 0 ) )
44 37 42 43 sylc ( ( 𝐴 ∈ ( 𝑇𝑅 ) ∧ 𝑡 ∈ ( ℕ ∖ 𝐽 ) ) → ( 𝐴𝑡 ) = 0 )