Metamath Proof Explorer


Theorem eulerpartlemt

Description: Lemma for eulerpart . (Contributed by Thierry Arnoux, 19-Sep-2017)

Ref Expression
Hypotheses eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
Assertion eulerpartlemt ( ( ℕ0m 𝐽 ) ∩ 𝑅 ) = ran ( 𝑚 ∈ ( 𝑇𝑅 ) ↦ ( 𝑚𝐽 ) )

Proof

Step Hyp Ref Expression
1 eulerpart.p 𝑃 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( ( 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓𝑘 ) · 𝑘 ) = 𝑁 ) }
2 eulerpart.o 𝑂 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ( 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 }
3 eulerpart.d 𝐷 = { 𝑔𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔𝑛 ) ≤ 1 }
4 eulerpart.j 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 }
5 eulerpart.f 𝐹 = ( 𝑥𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) )
6 eulerpart.h 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin }
7 eulerpart.m 𝑀 = ( 𝑟𝐻 ↦ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐽𝑦 ∈ ( 𝑟𝑥 ) ) } )
8 eulerpart.r 𝑅 = { 𝑓 ∣ ( 𝑓 “ ℕ ) ∈ Fin }
9 eulerpart.t 𝑇 = { 𝑓 ∈ ( ℕ0m ℕ ) ∣ ( 𝑓 “ ℕ ) ⊆ 𝐽 }
10 elmapi ( 𝑜 ∈ ( ℕ0m 𝐽 ) → 𝑜 : 𝐽 ⟶ ℕ0 )
11 10 adantr ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → 𝑜 : 𝐽 ⟶ ℕ0 )
12 c0ex 0 ∈ V
13 12 fconst ( ( ℕ ∖ 𝐽 ) × { 0 } ) : ( ℕ ∖ 𝐽 ) ⟶ { 0 }
14 13 a1i ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( ℕ ∖ 𝐽 ) × { 0 } ) : ( ℕ ∖ 𝐽 ) ⟶ { 0 } )
15 disjdif ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) ) = ∅
16 15 a1i ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) ) = ∅ )
17 fun ( ( ( 𝑜 : 𝐽 ⟶ ℕ0 ∧ ( ( ℕ ∖ 𝐽 ) × { 0 } ) : ( ℕ ∖ 𝐽 ) ⟶ { 0 } ) ∧ ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) ) = ∅ ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) ⟶ ( ℕ0 ∪ { 0 } ) )
18 11 14 16 17 syl21anc ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) ⟶ ( ℕ0 ∪ { 0 } ) )
19 ssrab2 { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ
20 4 19 eqsstri 𝐽 ⊆ ℕ
21 undif ( 𝐽 ⊆ ℕ ↔ ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) = ℕ )
22 20 21 mpbi ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) = ℕ
23 0nn0 0 ∈ ℕ0
24 snssi ( 0 ∈ ℕ0 → { 0 } ⊆ ℕ0 )
25 23 24 ax-mp { 0 } ⊆ ℕ0
26 ssequn2 ( { 0 } ⊆ ℕ0 ↔ ( ℕ0 ∪ { 0 } ) = ℕ0 )
27 25 26 mpbi ( ℕ0 ∪ { 0 } ) = ℕ0
28 22 27 feq23i ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ( 𝐽 ∪ ( ℕ ∖ 𝐽 ) ) ⟶ ( ℕ0 ∪ { 0 } ) ↔ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ℕ ⟶ ℕ0 )
29 18 28 sylib ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ℕ ⟶ ℕ0 )
30 nn0ex 0 ∈ V
31 nnex ℕ ∈ V
32 30 31 elmap ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( ℕ0m ℕ ) ↔ ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) : ℕ ⟶ ℕ0 )
33 29 32 sylibr ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( ℕ0m ℕ ) )
34 cnvun ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) = ( 𝑜 ( ( ℕ ∖ 𝐽 ) × { 0 } ) )
35 34 imaeq1i ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) = ( ( 𝑜 ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ )
36 imaundir ( ( 𝑜 ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) = ( ( 𝑜 “ ℕ ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) )
37 35 36 eqtri ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) = ( ( 𝑜 “ ℕ ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) )
38 vex 𝑜 ∈ V
39 cnveq ( 𝑓 = 𝑜 𝑓 = 𝑜 )
40 39 imaeq1d ( 𝑓 = 𝑜 → ( 𝑓 “ ℕ ) = ( 𝑜 “ ℕ ) )
41 40 eleq1d ( 𝑓 = 𝑜 → ( ( 𝑓 “ ℕ ) ∈ Fin ↔ ( 𝑜 “ ℕ ) ∈ Fin ) )
42 38 41 8 elab2 ( 𝑜𝑅 ↔ ( 𝑜 “ ℕ ) ∈ Fin )
43 42 biimpi ( 𝑜𝑅 → ( 𝑜 “ ℕ ) ∈ Fin )
44 43 adantl ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝑜 “ ℕ ) ∈ Fin )
45 cnvxp ( ( ℕ ∖ 𝐽 ) × { 0 } ) = ( { 0 } × ( ℕ ∖ 𝐽 ) )
46 45 dmeqi dom ( ( ℕ ∖ 𝐽 ) × { 0 } ) = dom ( { 0 } × ( ℕ ∖ 𝐽 ) )
47 2nn 2 ∈ ℕ
48 2z 2 ∈ ℤ
49 iddvds ( 2 ∈ ℤ → 2 ∥ 2 )
50 48 49 ax-mp 2 ∥ 2
51 breq2 ( 𝑧 = 2 → ( 2 ∥ 𝑧 ↔ 2 ∥ 2 ) )
52 51 notbid ( 𝑧 = 2 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 2 ) )
53 52 4 elrab2 ( 2 ∈ 𝐽 ↔ ( 2 ∈ ℕ ∧ ¬ 2 ∥ 2 ) )
54 53 simprbi ( 2 ∈ 𝐽 → ¬ 2 ∥ 2 )
55 50 54 mt2 ¬ 2 ∈ 𝐽
56 eldif ( 2 ∈ ( ℕ ∖ 𝐽 ) ↔ ( 2 ∈ ℕ ∧ ¬ 2 ∈ 𝐽 ) )
57 47 55 56 mpbir2an 2 ∈ ( ℕ ∖ 𝐽 )
58 ne0i ( 2 ∈ ( ℕ ∖ 𝐽 ) → ( ℕ ∖ 𝐽 ) ≠ ∅ )
59 dmxp ( ( ℕ ∖ 𝐽 ) ≠ ∅ → dom ( { 0 } × ( ℕ ∖ 𝐽 ) ) = { 0 } )
60 57 58 59 mp2b dom ( { 0 } × ( ℕ ∖ 𝐽 ) ) = { 0 }
61 46 60 eqtri dom ( ( ℕ ∖ 𝐽 ) × { 0 } ) = { 0 }
62 61 ineq1i ( dom ( ( ℕ ∖ 𝐽 ) × { 0 } ) ∩ ℕ ) = ( { 0 } ∩ ℕ )
63 incom ( ℕ ∩ { 0 } ) = ( { 0 } ∩ ℕ )
64 0nnn ¬ 0 ∈ ℕ
65 disjsn ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ )
66 64 65 mpbir ( ℕ ∩ { 0 } ) = ∅
67 62 63 66 3eqtr2i ( dom ( ( ℕ ∖ 𝐽 ) × { 0 } ) ∩ ℕ ) = ∅
68 imadisj ( ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) = ∅ ↔ ( dom ( ( ℕ ∖ 𝐽 ) × { 0 } ) ∩ ℕ ) = ∅ )
69 67 68 mpbir ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) = ∅
70 0fin ∅ ∈ Fin
71 69 70 eqeltri ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ∈ Fin
72 unfi ( ( ( 𝑜 “ ℕ ) ∈ Fin ∧ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ∈ Fin ) → ( ( 𝑜 “ ℕ ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) ∈ Fin )
73 44 71 72 sylancl ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( 𝑜 “ ℕ ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) ∈ Fin )
74 37 73 eqeltrid ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ∈ Fin )
75 cnvimass ( 𝑜 “ ℕ ) ⊆ dom 𝑜
76 75 11 fssdm ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝑜 “ ℕ ) ⊆ 𝐽 )
77 0ss ∅ ⊆ 𝐽
78 69 77 eqsstri ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ⊆ 𝐽
79 78 a1i ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ⊆ 𝐽 )
80 76 79 unssd ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( 𝑜 “ ℕ ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) “ ℕ ) ) ⊆ 𝐽 )
81 37 80 eqsstrid ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ⊆ 𝐽 )
82 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( 𝑇𝑅 ) ↔ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( ℕ0m ℕ ) ∧ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ∈ Fin ∧ ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) “ ℕ ) ⊆ 𝐽 ) )
83 33 74 81 82 syl3anbrc ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( 𝑇𝑅 ) )
84 resundir ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) = ( ( 𝑜𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) )
85 ffn ( 𝑜 : 𝐽 ⟶ ℕ0𝑜 Fn 𝐽 )
86 fnresdm ( 𝑜 Fn 𝐽 → ( 𝑜𝐽 ) = 𝑜 )
87 incom ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ( 𝐽 ∩ ( ℕ ∖ 𝐽 ) )
88 87 15 eqtri ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ∅
89 fnconstg ( 0 ∈ ℕ0 → ( ( ℕ ∖ 𝐽 ) × { 0 } ) Fn ( ℕ ∖ 𝐽 ) )
90 fnresdisj ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) Fn ( ℕ ∖ 𝐽 ) → ( ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ↔ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ ) )
91 23 89 90 mp2b ( ( ( ℕ ∖ 𝐽 ) ∩ 𝐽 ) = ∅ ↔ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ )
92 88 91 mpbi ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅
93 92 a1i ( 𝑜 Fn 𝐽 → ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) = ∅ )
94 86 93 uneq12d ( 𝑜 Fn 𝐽 → ( ( 𝑜𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) = ( 𝑜 ∪ ∅ ) )
95 11 85 94 3syl ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( 𝑜𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) = ( 𝑜 ∪ ∅ ) )
96 un0 ( 𝑜 ∪ ∅ ) = 𝑜
97 95 96 eqtrdi ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ( ( 𝑜𝐽 ) ∪ ( ( ( ℕ ∖ 𝐽 ) × { 0 } ) ↾ 𝐽 ) ) = 𝑜 )
98 84 97 syl5req ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → 𝑜 = ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) )
99 reseq1 ( 𝑚 = ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) → ( 𝑚𝐽 ) = ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) )
100 99 rspceeqv ( ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( ( 𝑜 ∪ ( ( ℕ ∖ 𝐽 ) × { 0 } ) ) ↾ 𝐽 ) ) → ∃ 𝑚 ∈ ( 𝑇𝑅 ) 𝑜 = ( 𝑚𝐽 ) )
101 83 98 100 syl2anc ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) → ∃ 𝑚 ∈ ( 𝑇𝑅 ) 𝑜 = ( 𝑚𝐽 ) )
102 simpr ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → 𝑜 = ( 𝑚𝐽 ) )
103 simpl ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → 𝑚 ∈ ( 𝑇𝑅 ) )
104 1 2 3 4 5 6 7 8 9 eulerpartlemt0 ( 𝑚 ∈ ( 𝑇𝑅 ) ↔ ( 𝑚 ∈ ( ℕ0m ℕ ) ∧ ( 𝑚 “ ℕ ) ∈ Fin ∧ ( 𝑚 “ ℕ ) ⊆ 𝐽 ) )
105 103 104 sylib ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( 𝑚 ∈ ( ℕ0m ℕ ) ∧ ( 𝑚 “ ℕ ) ∈ Fin ∧ ( 𝑚 “ ℕ ) ⊆ 𝐽 ) )
106 105 simp1d ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → 𝑚 ∈ ( ℕ0m ℕ ) )
107 30 31 elmap ( 𝑚 ∈ ( ℕ0m ℕ ) ↔ 𝑚 : ℕ ⟶ ℕ0 )
108 106 107 sylib ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → 𝑚 : ℕ ⟶ ℕ0 )
109 fssres ( ( 𝑚 : ℕ ⟶ ℕ0𝐽 ⊆ ℕ ) → ( 𝑚𝐽 ) : 𝐽 ⟶ ℕ0 )
110 108 20 109 sylancl ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( 𝑚𝐽 ) : 𝐽 ⟶ ℕ0 )
111 4 31 rabex2 𝐽 ∈ V
112 30 111 elmap ( ( 𝑚𝐽 ) ∈ ( ℕ0m 𝐽 ) ↔ ( 𝑚𝐽 ) : 𝐽 ⟶ ℕ0 )
113 110 112 sylibr ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( 𝑚𝐽 ) ∈ ( ℕ0m 𝐽 ) )
114 102 113 eqeltrd ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → 𝑜 ∈ ( ℕ0m 𝐽 ) )
115 ffun ( 𝑚 : ℕ ⟶ ℕ0 → Fun 𝑚 )
116 respreima ( Fun 𝑚 → ( ( 𝑚𝐽 ) “ ℕ ) = ( ( 𝑚 “ ℕ ) ∩ 𝐽 ) )
117 108 115 116 3syl ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( ( 𝑚𝐽 ) “ ℕ ) = ( ( 𝑚 “ ℕ ) ∩ 𝐽 ) )
118 105 simp2d ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( 𝑚 “ ℕ ) ∈ Fin )
119 infi ( ( 𝑚 “ ℕ ) ∈ Fin → ( ( 𝑚 “ ℕ ) ∩ 𝐽 ) ∈ Fin )
120 118 119 syl ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( ( 𝑚 “ ℕ ) ∩ 𝐽 ) ∈ Fin )
121 117 120 eqeltrd ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( ( 𝑚𝐽 ) “ ℕ ) ∈ Fin )
122 vex 𝑚 ∈ V
123 122 resex ( 𝑚𝐽 ) ∈ V
124 cnveq ( 𝑓 = ( 𝑚𝐽 ) → 𝑓 = ( 𝑚𝐽 ) )
125 124 imaeq1d ( 𝑓 = ( 𝑚𝐽 ) → ( 𝑓 “ ℕ ) = ( ( 𝑚𝐽 ) “ ℕ ) )
126 125 eleq1d ( 𝑓 = ( 𝑚𝐽 ) → ( ( 𝑓 “ ℕ ) ∈ Fin ↔ ( ( 𝑚𝐽 ) “ ℕ ) ∈ Fin ) )
127 123 126 8 elab2 ( ( 𝑚𝐽 ) ∈ 𝑅 ↔ ( ( 𝑚𝐽 ) “ ℕ ) ∈ Fin )
128 121 127 sylibr ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( 𝑚𝐽 ) ∈ 𝑅 )
129 102 128 eqeltrd ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → 𝑜𝑅 )
130 114 129 jca ( ( 𝑚 ∈ ( 𝑇𝑅 ) ∧ 𝑜 = ( 𝑚𝐽 ) ) → ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) )
131 130 rexlimiva ( ∃ 𝑚 ∈ ( 𝑇𝑅 ) 𝑜 = ( 𝑚𝐽 ) → ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) )
132 101 131 impbii ( ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) ↔ ∃ 𝑚 ∈ ( 𝑇𝑅 ) 𝑜 = ( 𝑚𝐽 ) )
133 132 abbii { 𝑜 ∣ ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) } = { 𝑜 ∣ ∃ 𝑚 ∈ ( 𝑇𝑅 ) 𝑜 = ( 𝑚𝐽 ) }
134 df-in ( ( ℕ0m 𝐽 ) ∩ 𝑅 ) = { 𝑜 ∣ ( 𝑜 ∈ ( ℕ0m 𝐽 ) ∧ 𝑜𝑅 ) }
135 eqid ( 𝑚 ∈ ( 𝑇𝑅 ) ↦ ( 𝑚𝐽 ) ) = ( 𝑚 ∈ ( 𝑇𝑅 ) ↦ ( 𝑚𝐽 ) )
136 135 rnmpt ran ( 𝑚 ∈ ( 𝑇𝑅 ) ↦ ( 𝑚𝐽 ) ) = { 𝑜 ∣ ∃ 𝑚 ∈ ( 𝑇𝑅 ) 𝑜 = ( 𝑚𝐽 ) }
137 133 134 136 3eqtr4i ( ( ℕ0m 𝐽 ) ∩ 𝑅 ) = ran ( 𝑚 ∈ ( 𝑇𝑅 ) ↦ ( 𝑚𝐽 ) )