| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eulerpart.p |
⊢ 𝑃 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ∧ Σ 𝑘 ∈ ℕ ( ( 𝑓 ‘ 𝑘 ) · 𝑘 ) = 𝑁 ) } |
| 2 |
|
eulerpart.o |
⊢ 𝑂 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ( ◡ 𝑔 “ ℕ ) ¬ 2 ∥ 𝑛 } |
| 3 |
|
eulerpart.d |
⊢ 𝐷 = { 𝑔 ∈ 𝑃 ∣ ∀ 𝑛 ∈ ℕ ( 𝑔 ‘ 𝑛 ) ≤ 1 } |
| 4 |
|
eulerpart.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
| 5 |
|
eulerpart.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 6 |
|
eulerpart.h |
⊢ 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
| 7 |
|
eulerpart.m |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ( 𝑟 ‘ 𝑥 ) ) } ) |
| 8 |
|
eulerpart.r |
⊢ 𝑅 = { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 9 |
|
eulerpart.t |
⊢ 𝑇 = { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } |
| 10 |
|
eulerpart.g |
⊢ 𝐺 = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 11 |
|
nnex |
⊢ ℕ ∈ V |
| 12 |
|
indf1ofs |
⊢ ( ℕ ∈ V → ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ) |
| 13 |
11 12
|
ax-mp |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } |
| 14 |
|
incom |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) = ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( { 0 , 1 } ↑m ℕ ) ) |
| 15 |
8
|
ineq2i |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) = ( ( { 0 , 1 } ↑m ℕ ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 16 |
|
dfrab2 |
⊢ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( { 0 , 1 } ↑m ℕ ) ) |
| 17 |
14 15 16
|
3eqtr4i |
⊢ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) = { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 18 |
|
elmapfun |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → Fun 𝑓 ) |
| 19 |
|
elmapi |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → 𝑓 : ℕ ⟶ { 0 , 1 } ) |
| 20 |
19
|
frnd |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → ran 𝑓 ⊆ { 0 , 1 } ) |
| 21 |
|
fimacnvinrn2 |
⊢ ( ( Fun 𝑓 ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ ( ℕ ∩ { 0 , 1 } ) ) ) |
| 22 |
|
df-pr |
⊢ { 0 , 1 } = ( { 0 } ∪ { 1 } ) |
| 23 |
22
|
ineq2i |
⊢ ( ℕ ∩ { 0 , 1 } ) = ( ℕ ∩ ( { 0 } ∪ { 1 } ) ) |
| 24 |
|
indi |
⊢ ( ℕ ∩ ( { 0 } ∪ { 1 } ) ) = ( ( ℕ ∩ { 0 } ) ∪ ( ℕ ∩ { 1 } ) ) |
| 25 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
| 26 |
|
disjsn |
⊢ ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ ) |
| 27 |
25 26
|
mpbir |
⊢ ( ℕ ∩ { 0 } ) = ∅ |
| 28 |
|
1nn |
⊢ 1 ∈ ℕ |
| 29 |
|
1ex |
⊢ 1 ∈ V |
| 30 |
29
|
snss |
⊢ ( 1 ∈ ℕ ↔ { 1 } ⊆ ℕ ) |
| 31 |
28 30
|
mpbi |
⊢ { 1 } ⊆ ℕ |
| 32 |
|
dfss |
⊢ ( { 1 } ⊆ ℕ ↔ { 1 } = ( { 1 } ∩ ℕ ) ) |
| 33 |
31 32
|
mpbi |
⊢ { 1 } = ( { 1 } ∩ ℕ ) |
| 34 |
|
incom |
⊢ ( { 1 } ∩ ℕ ) = ( ℕ ∩ { 1 } ) |
| 35 |
33 34
|
eqtr2i |
⊢ ( ℕ ∩ { 1 } ) = { 1 } |
| 36 |
27 35
|
uneq12i |
⊢ ( ( ℕ ∩ { 0 } ) ∪ ( ℕ ∩ { 1 } ) ) = ( ∅ ∪ { 1 } ) |
| 37 |
23 24 36
|
3eqtri |
⊢ ( ℕ ∩ { 0 , 1 } ) = ( ∅ ∪ { 1 } ) |
| 38 |
|
uncom |
⊢ ( ∅ ∪ { 1 } ) = ( { 1 } ∪ ∅ ) |
| 39 |
|
un0 |
⊢ ( { 1 } ∪ ∅ ) = { 1 } |
| 40 |
37 38 39
|
3eqtri |
⊢ ( ℕ ∩ { 0 , 1 } ) = { 1 } |
| 41 |
40
|
imaeq2i |
⊢ ( ◡ 𝑓 “ ( ℕ ∩ { 0 , 1 } ) ) = ( ◡ 𝑓 “ { 1 } ) |
| 42 |
21 41
|
eqtrdi |
⊢ ( ( Fun 𝑓 ∧ ran 𝑓 ⊆ { 0 , 1 } ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ { 1 } ) ) |
| 43 |
18 20 42
|
syl2anc |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑓 “ { 1 } ) ) |
| 44 |
43
|
eleq1d |
⊢ ( 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) → ( ( ◡ 𝑓 “ ℕ ) ∈ Fin ↔ ( ◡ 𝑓 “ { 1 } ) ∈ Fin ) ) |
| 45 |
44
|
rabbiia |
⊢ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } |
| 46 |
17 45
|
eqtr2i |
⊢ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } = ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
| 47 |
|
f1oeq3 |
⊢ ( { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } = ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) → ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ↔ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) ) |
| 48 |
46 47
|
ax-mp |
⊢ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ { 𝑓 ∈ ( { 0 , 1 } ↑m ℕ ) ∣ ( ◡ 𝑓 “ { 1 } ) ∈ Fin } ↔ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
| 49 |
13 48
|
mpbi |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
| 50 |
4 5
|
oddpwdc |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ |
| 51 |
|
f1opwfi |
⊢ ( 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ → ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) : ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) |
| 52 |
50 51
|
ax-mp |
⊢ ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) : ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) |
| 53 |
1 2 3 4 5 6 7
|
eulerpartlem1 |
⊢ 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
| 54 |
|
bitsf1o |
⊢ ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) |
| 55 |
54
|
a1i |
⊢ ( ⊤ → ( bits ↾ ℕ0 ) : ℕ0 –1-1-onto→ ( 𝒫 ℕ0 ∩ Fin ) ) |
| 56 |
4 11
|
rabex2 |
⊢ 𝐽 ∈ V |
| 57 |
56
|
a1i |
⊢ ( ⊤ → 𝐽 ∈ V ) |
| 58 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 59 |
58
|
a1i |
⊢ ( ⊤ → ℕ0 ∈ V ) |
| 60 |
58
|
pwex |
⊢ 𝒫 ℕ0 ∈ V |
| 61 |
60
|
inex1 |
⊢ ( 𝒫 ℕ0 ∩ Fin ) ∈ V |
| 62 |
61
|
a1i |
⊢ ( ⊤ → ( 𝒫 ℕ0 ∩ Fin ) ∈ V ) |
| 63 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 64 |
63
|
a1i |
⊢ ( ⊤ → 0 ∈ ℕ0 ) |
| 65 |
|
fvres |
⊢ ( 0 ∈ ℕ0 → ( ( bits ↾ ℕ0 ) ‘ 0 ) = ( bits ‘ 0 ) ) |
| 66 |
63 65
|
ax-mp |
⊢ ( ( bits ↾ ℕ0 ) ‘ 0 ) = ( bits ‘ 0 ) |
| 67 |
|
0bits |
⊢ ( bits ‘ 0 ) = ∅ |
| 68 |
66 67
|
eqtr2i |
⊢ ∅ = ( ( bits ↾ ℕ0 ) ‘ 0 ) |
| 69 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → 𝑓 : 𝐽 ⟶ ℕ0 ) |
| 70 |
|
fcdmnn0supp |
⊢ ( ( 𝐽 ∈ V ∧ 𝑓 : 𝐽 ⟶ ℕ0 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ℕ ) ) |
| 71 |
56 69 70
|
sylancr |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( 𝑓 supp 0 ) = ( ◡ 𝑓 “ ℕ ) ) |
| 72 |
71
|
eleq1d |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( ( 𝑓 supp 0 ) ∈ Fin ↔ ( ◡ 𝑓 “ ℕ ) ∈ Fin ) ) |
| 73 |
72
|
rabbiia |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( 𝑓 supp 0 ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 74 |
|
elmapfun |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → Fun 𝑓 ) |
| 75 |
|
vex |
⊢ 𝑓 ∈ V |
| 76 |
|
funisfsupp |
⊢ ( ( Fun 𝑓 ∧ 𝑓 ∈ V ∧ 0 ∈ ℕ0 ) → ( 𝑓 finSupp 0 ↔ ( 𝑓 supp 0 ) ∈ Fin ) ) |
| 77 |
75 63 76
|
mp3an23 |
⊢ ( Fun 𝑓 → ( 𝑓 finSupp 0 ↔ ( 𝑓 supp 0 ) ∈ Fin ) ) |
| 78 |
74 77
|
syl |
⊢ ( 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) → ( 𝑓 finSupp 0 ↔ ( 𝑓 supp 0 ) ∈ Fin ) ) |
| 79 |
78
|
rabbiia |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ 𝑓 finSupp 0 } = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( 𝑓 supp 0 ) ∈ Fin } |
| 80 |
|
incom |
⊢ ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( ℕ0 ↑m 𝐽 ) ) = ( ( ℕ0 ↑m 𝐽 ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 81 |
|
dfrab2 |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = ( { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∩ ( ℕ0 ↑m 𝐽 ) ) |
| 82 |
8
|
ineq2i |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = ( ( ℕ0 ↑m 𝐽 ) ∩ { 𝑓 ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 83 |
80 81 82
|
3eqtr4ri |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 84 |
73 79 83
|
3eqtr4ri |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = { 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ∣ 𝑓 finSupp 0 } |
| 85 |
|
elmapfun |
⊢ ( 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) → Fun 𝑟 ) |
| 86 |
|
vex |
⊢ 𝑟 ∈ V |
| 87 |
|
0ex |
⊢ ∅ ∈ V |
| 88 |
|
funisfsupp |
⊢ ( ( Fun 𝑟 ∧ 𝑟 ∈ V ∧ ∅ ∈ V ) → ( 𝑟 finSupp ∅ ↔ ( 𝑟 supp ∅ ) ∈ Fin ) ) |
| 89 |
86 87 88
|
mp3an23 |
⊢ ( Fun 𝑟 → ( 𝑟 finSupp ∅ ↔ ( 𝑟 supp ∅ ) ∈ Fin ) ) |
| 90 |
89
|
bicomd |
⊢ ( Fun 𝑟 → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ 𝑟 finSupp ∅ ) ) |
| 91 |
85 90
|
syl |
⊢ ( 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) → ( ( 𝑟 supp ∅ ) ∈ Fin ↔ 𝑟 finSupp ∅ ) ) |
| 92 |
91
|
rabbiia |
⊢ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ 𝑟 finSupp ∅ } |
| 93 |
55 57 59 62 64 68 84 92
|
fcobijfs |
⊢ ( ⊤ → ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
| 94 |
|
elinel1 |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → 𝑓 ∈ ( ℕ0 ↑m 𝐽 ) ) |
| 95 |
|
frn |
⊢ ( 𝑓 : 𝐽 ⟶ ℕ0 → ran 𝑓 ⊆ ℕ0 ) |
| 96 |
|
cores |
⊢ ( ran 𝑓 ⊆ ℕ0 → ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) = ( bits ∘ 𝑓 ) ) |
| 97 |
94 69 95 96
|
4syl |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) = ( bits ∘ 𝑓 ) ) |
| 98 |
97
|
mpteq2ia |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) |
| 99 |
98
|
eqcomi |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) |
| 100 |
|
f1oeq1 |
⊢ ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↔ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) ) |
| 101 |
99 100
|
mp1i |
⊢ ( ⊤ → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ↔ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( ( bits ↾ ℕ0 ) ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) ) |
| 102 |
93 101
|
mpbird |
⊢ ( ⊤ → ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
| 103 |
102
|
mptru |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
| 104 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
| 105 |
4 104
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
| 106 |
11 58 105
|
3pm3.2i |
⊢ ( ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ ) |
| 107 |
|
cnveq |
⊢ ( 𝑓 = 𝑜 → ◡ 𝑓 = ◡ 𝑜 ) |
| 108 |
|
dfn2 |
⊢ ℕ = ( ℕ0 ∖ { 0 } ) |
| 109 |
108
|
a1i |
⊢ ( 𝑓 = 𝑜 → ℕ = ( ℕ0 ∖ { 0 } ) ) |
| 110 |
107 109
|
imaeq12d |
⊢ ( 𝑓 = 𝑜 → ( ◡ 𝑓 “ ℕ ) = ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ) |
| 111 |
110
|
sseq1d |
⊢ ( 𝑓 = 𝑜 → ( ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 ↔ ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐽 ) ) |
| 112 |
111
|
cbvrabv |
⊢ { 𝑓 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑓 “ ℕ ) ⊆ 𝐽 } = { 𝑜 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐽 } |
| 113 |
9 112
|
eqtri |
⊢ 𝑇 = { 𝑜 ∈ ( ℕ0 ↑m ℕ ) ∣ ( ◡ 𝑜 “ ( ℕ0 ∖ { 0 } ) ) ⊆ 𝐽 } |
| 114 |
|
eqid |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) = ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) |
| 115 |
113 114
|
resf1o |
⊢ ( ( ( ℕ ∈ V ∧ ℕ0 ∈ V ∧ 𝐽 ⊆ ℕ ) ∧ 0 ∈ ℕ0 ) → ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1-onto→ ( ℕ0 ↑m 𝐽 ) ) |
| 116 |
106 63 115
|
mp2an |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1-onto→ ( ℕ0 ↑m 𝐽 ) |
| 117 |
|
f1of1 |
⊢ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1-onto→ ( ℕ0 ↑m 𝐽 ) → ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1→ ( ℕ0 ↑m 𝐽 ) ) |
| 118 |
116 117
|
ax-mp |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1→ ( ℕ0 ↑m 𝐽 ) |
| 119 |
|
inss1 |
⊢ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 |
| 120 |
|
f1ores |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) : 𝑇 –1-1→ ( ℕ0 ↑m 𝐽 ) ∧ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 ) → ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ) |
| 121 |
118 119 120
|
mp2an |
⊢ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) |
| 122 |
|
vex |
⊢ 𝑜 ∈ V |
| 123 |
122
|
resex |
⊢ ( 𝑜 ↾ 𝐽 ) ∈ V |
| 124 |
123 114
|
fnmpti |
⊢ ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) Fn 𝑇 |
| 125 |
|
fvelimab |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) Fn 𝑇 ∧ ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 ) → ( 𝑓 ∈ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ) ) |
| 126 |
124 119 125
|
mp2an |
⊢ ( 𝑓 ∈ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ) |
| 127 |
|
eqid |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) = ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) |
| 128 |
|
vex |
⊢ 𝑚 ∈ V |
| 129 |
128
|
resex |
⊢ ( 𝑚 ↾ 𝐽 ) ∈ V |
| 130 |
127 129
|
elrnmpti |
⊢ ( 𝑓 ∈ ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑓 = ( 𝑚 ↾ 𝐽 ) ) |
| 131 |
1 2 3 4 5 6 7 8 9
|
eulerpartlemt |
⊢ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) = ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) |
| 132 |
131
|
eleq2i |
⊢ ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ 𝑓 ∈ ran ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑚 ↾ 𝐽 ) ) ) |
| 133 |
|
elinel1 |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) → 𝑚 ∈ 𝑇 ) |
| 134 |
114
|
fvtresfn |
⊢ ( 𝑚 ∈ 𝑇 → ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = ( 𝑚 ↾ 𝐽 ) ) |
| 135 |
134
|
eqeq1d |
⊢ ( 𝑚 ∈ 𝑇 → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ ( 𝑚 ↾ 𝐽 ) = 𝑓 ) ) |
| 136 |
133 135
|
syl |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ ( 𝑚 ↾ 𝐽 ) = 𝑓 ) ) |
| 137 |
|
eqcom |
⊢ ( ( 𝑚 ↾ 𝐽 ) = 𝑓 ↔ 𝑓 = ( 𝑚 ↾ 𝐽 ) ) |
| 138 |
136 137
|
bitrdi |
⊢ ( 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ 𝑓 = ( 𝑚 ↾ 𝐽 ) ) ) |
| 139 |
138
|
rexbiia |
⊢ ( ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) 𝑓 = ( 𝑚 ↾ 𝐽 ) ) |
| 140 |
130 132 139
|
3bitr4ri |
⊢ ( ∃ 𝑚 ∈ ( 𝑇 ∩ 𝑅 ) ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ‘ 𝑚 ) = 𝑓 ↔ 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 141 |
126 140
|
bitri |
⊢ ( 𝑓 ∈ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 142 |
141
|
eqriv |
⊢ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) = ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) |
| 143 |
|
f1oeq3 |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) = ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) ) |
| 144 |
142 143
|
ax-mp |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 145 |
|
resmpt |
⊢ ( ( 𝑇 ∩ 𝑅 ) ⊆ 𝑇 → ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) |
| 146 |
|
f1oeq1 |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) → ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) ) |
| 147 |
119 145 146
|
mp2b |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 148 |
144 147
|
bitri |
⊢ ( ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) ↾ ( 𝑇 ∩ 𝑅 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( 𝑜 ∈ 𝑇 ↦ ( 𝑜 ↾ 𝐽 ) ) “ ( 𝑇 ∩ 𝑅 ) ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 149 |
121 148
|
mpbi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) |
| 150 |
|
f1oco |
⊢ ( ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) : ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
| 151 |
103 149 150
|
mp2an |
⊢ ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } |
| 152 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 153 |
|
eqid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) |
| 154 |
153
|
fmpt |
⊢ ( ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 155 |
154
|
biimpri |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) → ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 156 |
149 152 155
|
mp2b |
⊢ ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) |
| 157 |
156
|
a1i |
⊢ ( ⊤ → ∀ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ( 𝑜 ↾ 𝐽 ) ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ) |
| 158 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) |
| 159 |
|
eqidd |
⊢ ( ⊤ → ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) = ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ) |
| 160 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑜 ↾ 𝐽 ) → ( bits ∘ 𝑓 ) = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) |
| 161 |
157 158 159 160
|
fmptcof |
⊢ ( ⊤ → ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 162 |
161
|
eqcomd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) = ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 163 |
|
eqidd |
⊢ ( ⊤ → ( 𝑇 ∩ 𝑅 ) = ( 𝑇 ∩ 𝑅 ) ) |
| 164 |
6
|
a1i |
⊢ ( ⊤ → 𝐻 = { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) |
| 165 |
162 163 164
|
f1oeq123d |
⊢ ( ⊤ → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 ↔ ( ( 𝑓 ∈ ( ( ℕ0 ↑m 𝐽 ) ∩ 𝑅 ) ↦ ( bits ∘ 𝑓 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ { 𝑟 ∈ ( ( 𝒫 ℕ0 ∩ Fin ) ↑m 𝐽 ) ∣ ( 𝑟 supp ∅ ) ∈ Fin } ) ) |
| 166 |
151 165
|
mpbiri |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 ) |
| 167 |
166
|
mptru |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 |
| 168 |
|
f1oco |
⊢ ( ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 ) → ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 169 |
53 167 168
|
mp2an |
⊢ ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
| 170 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 171 |
|
bitsf |
⊢ bits : ℤ ⟶ 𝒫 ℕ0 |
| 172 |
|
zex |
⊢ ℤ ∈ V |
| 173 |
|
fex |
⊢ ( ( bits : ℤ ⟶ 𝒫 ℕ0 ∧ ℤ ∈ V ) → bits ∈ V ) |
| 174 |
171 172 173
|
mp2an |
⊢ bits ∈ V |
| 175 |
174 123
|
coex |
⊢ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ∈ V |
| 176 |
175
|
a1i |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ∈ V ) |
| 177 |
170 176
|
fvmpt2d |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ‘ 𝑜 ) = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) |
| 178 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ 𝐻 → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ 𝐻 ) |
| 179 |
166 178
|
syl |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ 𝐻 ) |
| 180 |
179
|
ffvelcdmda |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ‘ 𝑜 ) ∈ 𝐻 ) |
| 181 |
177 180
|
eqeltrrd |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ∈ 𝐻 ) |
| 182 |
|
f1ofn |
⊢ ( 𝑀 : 𝐻 –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) → 𝑀 Fn 𝐻 ) |
| 183 |
53 182
|
ax-mp |
⊢ 𝑀 Fn 𝐻 |
| 184 |
|
dffn5 |
⊢ ( 𝑀 Fn 𝐻 ↔ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ ( 𝑀 ‘ 𝑟 ) ) ) |
| 185 |
183 184
|
mpbi |
⊢ 𝑀 = ( 𝑟 ∈ 𝐻 ↦ ( 𝑀 ‘ 𝑟 ) ) |
| 186 |
185
|
a1i |
⊢ ( ⊤ → 𝑀 = ( 𝑟 ∈ 𝐻 ↦ ( 𝑀 ‘ 𝑟 ) ) ) |
| 187 |
|
fveq2 |
⊢ ( 𝑟 = ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) → ( 𝑀 ‘ 𝑟 ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 188 |
181 170 186 187
|
fmptco |
⊢ ( ⊤ → ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 189 |
188
|
mptru |
⊢ ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 190 |
|
f1oeq1 |
⊢ ( ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) → ( ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) ) |
| 191 |
189 190
|
ax-mp |
⊢ ( ( 𝑀 ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 192 |
169 191
|
mpbi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) |
| 193 |
|
f1oco |
⊢ ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) : ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) → ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) |
| 194 |
52 192 193
|
mp2an |
⊢ ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) |
| 195 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) |
| 196 |
|
fvex |
⊢ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ∈ V |
| 197 |
|
eqid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 198 |
197
|
fvmpt2 |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ∈ V ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ‘ 𝑜 ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 199 |
195 196 198
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ‘ 𝑜 ) = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) |
| 200 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 201 |
192 200
|
mp1i |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 202 |
201
|
ffvelcdmda |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ‘ 𝑜 ) ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 203 |
199 202
|
eqeltrrd |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ) |
| 204 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 205 |
|
eqidd |
⊢ ( ⊤ → ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) = ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ) |
| 206 |
|
imaeq2 |
⊢ ( 𝑎 = ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) → ( 𝐹 “ 𝑎 ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 207 |
203 204 205 206
|
fmptco |
⊢ ( ⊤ → ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 208 |
207
|
mptru |
⊢ ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 209 |
|
f1oeq1 |
⊢ ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) → ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) ) |
| 210 |
208 209
|
ax-mp |
⊢ ( ( ( 𝑎 ∈ ( 𝒫 ( 𝐽 × ℕ0 ) ∩ Fin ) ↦ ( 𝐹 “ 𝑎 ) ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ↔ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) |
| 211 |
194 210
|
mpbi |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) |
| 212 |
|
f1oco |
⊢ ( ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) : ( 𝒫 ℕ ∩ Fin ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ∧ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) ) → ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
| 213 |
49 211 212
|
mp2an |
⊢ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |
| 214 |
5
|
mpoexg |
⊢ ( ( 𝐽 ∈ V ∧ ℕ0 ∈ V ) → 𝐹 ∈ V ) |
| 215 |
56 58 214
|
mp2an |
⊢ 𝐹 ∈ V |
| 216 |
|
imaexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ V ) |
| 217 |
215 216
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ V |
| 218 |
|
eqid |
⊢ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 219 |
218
|
fvmpt2 |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ∧ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ V ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ‘ 𝑜 ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 220 |
195 217 219
|
sylancl |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ‘ 𝑜 ) = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) |
| 221 |
|
f1of |
⊢ ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( 𝒫 ℕ ∩ Fin ) → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ℕ ∩ Fin ) ) |
| 222 |
211 221
|
mp1i |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) ⟶ ( 𝒫 ℕ ∩ Fin ) ) |
| 223 |
222
|
ffvelcdmda |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ‘ 𝑜 ) ∈ ( 𝒫 ℕ ∩ Fin ) ) |
| 224 |
220 223
|
eqeltrrd |
⊢ ( ( ⊤ ∧ 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ) → ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ∈ ( 𝒫 ℕ ∩ Fin ) ) |
| 225 |
|
eqidd |
⊢ ( ⊤ → ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 226 |
|
indf1o |
⊢ ( ℕ ∈ V → ( 𝟭 ‘ ℕ ) : 𝒫 ℕ –1-1-onto→ ( { 0 , 1 } ↑m ℕ ) ) |
| 227 |
|
f1ofn |
⊢ ( ( 𝟭 ‘ ℕ ) : 𝒫 ℕ –1-1-onto→ ( { 0 , 1 } ↑m ℕ ) → ( 𝟭 ‘ ℕ ) Fn 𝒫 ℕ ) |
| 228 |
11 226 227
|
mp2b |
⊢ ( 𝟭 ‘ ℕ ) Fn 𝒫 ℕ |
| 229 |
|
dffn5 |
⊢ ( ( 𝟭 ‘ ℕ ) Fn 𝒫 ℕ ↔ ( 𝟭 ‘ ℕ ) = ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ) |
| 230 |
228 229
|
mpbi |
⊢ ( 𝟭 ‘ ℕ ) = ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) |
| 231 |
230
|
reseq1i |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) = ( ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ↾ Fin ) |
| 232 |
|
resmpt3 |
⊢ ( ( 𝑏 ∈ 𝒫 ℕ ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ↾ Fin ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) |
| 233 |
231 232
|
eqtri |
⊢ ( ( 𝟭 ‘ ℕ ) ↾ Fin ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) |
| 234 |
233
|
a1i |
⊢ ( ⊤ → ( ( 𝟭 ‘ ℕ ) ↾ Fin ) = ( 𝑏 ∈ ( 𝒫 ℕ ∩ Fin ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) ) ) |
| 235 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) → ( ( 𝟭 ‘ ℕ ) ‘ 𝑏 ) = ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 236 |
224 225 234 235
|
fmptco |
⊢ ( ⊤ → ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) ) |
| 237 |
236
|
mptru |
⊢ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) = ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( ( 𝟭 ‘ ℕ ) ‘ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 238 |
10 237
|
eqtr4i |
⊢ 𝐺 = ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) |
| 239 |
|
f1oeq1 |
⊢ ( 𝐺 = ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) → ( 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) ) |
| 240 |
238 239
|
ax-mp |
⊢ ( 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ↔ ( ( ( 𝟭 ‘ ℕ ) ↾ Fin ) ∘ ( 𝑜 ∈ ( 𝑇 ∩ 𝑅 ) ↦ ( 𝐹 “ ( 𝑀 ‘ ( bits ∘ ( 𝑜 ↾ 𝐽 ) ) ) ) ) ) : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) ) |
| 241 |
213 240
|
mpbir |
⊢ 𝐺 : ( 𝑇 ∩ 𝑅 ) –1-1-onto→ ( ( { 0 , 1 } ↑m ℕ ) ∩ 𝑅 ) |