| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oddpwdc.j |
⊢ 𝐽 = { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } |
| 2 |
|
oddpwdc.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐽 , 𝑦 ∈ ℕ0 ↦ ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 3 |
|
2nn |
⊢ 2 ∈ ℕ |
| 4 |
3
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 2 ∈ ℕ ) |
| 5 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 𝑦 ∈ ℕ0 ) |
| 6 |
4 5
|
nnexpcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 7 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧 } ⊆ ℕ |
| 8 |
1 7
|
eqsstri |
⊢ 𝐽 ⊆ ℕ |
| 9 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ 𝐽 ) |
| 10 |
8 9
|
sselid |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → 𝑥 ∈ ℕ ) |
| 11 |
6 10
|
nnmulcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑥 ∈ 𝐽 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
| 12 |
11
|
ancoms |
⊢ ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
| 13 |
12
|
adantl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
| 14 |
|
id |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℕ ) |
| 15 |
3
|
a1i |
⊢ ( 𝑎 ∈ ℕ → 2 ∈ ℕ ) |
| 16 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
| 17 |
|
ltso |
⊢ < Or ℝ |
| 18 |
|
soss |
⊢ ( ℕ0 ⊆ ℝ → ( < Or ℝ → < Or ℕ0 ) ) |
| 19 |
16 17 18
|
mp2 |
⊢ < Or ℕ0 |
| 20 |
19
|
a1i |
⊢ ( 𝑎 ∈ ℕ → < Or ℕ0 ) |
| 21 |
|
0zd |
⊢ ( 𝑎 ∈ ℕ → 0 ∈ ℤ ) |
| 22 |
|
ssrab2 |
⊢ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 |
| 23 |
22
|
a1i |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ) |
| 24 |
|
nnz |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℤ ) |
| 25 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑛 ) ) |
| 26 |
25
|
breq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) |
| 27 |
26
|
elrab |
⊢ ( 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) |
| 28 |
|
simprl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ∈ ℕ0 ) |
| 29 |
28
|
nn0red |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ∈ ℝ ) |
| 30 |
3
|
a1i |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 2 ∈ ℕ ) |
| 31 |
30 28
|
nnexpcld |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 32 |
31
|
nnred |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 33 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑎 ∈ ℕ ) |
| 34 |
33
|
nnred |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑎 ∈ ℝ ) |
| 35 |
|
2re |
⊢ 2 ∈ ℝ |
| 36 |
35
|
leidi |
⊢ 2 ≤ 2 |
| 37 |
|
nexple |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 2 ∈ ℝ ∧ 2 ≤ 2 ) → 𝑛 ≤ ( 2 ↑ 𝑛 ) ) |
| 38 |
35 36 37
|
mp3an23 |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ≤ ( 2 ↑ 𝑛 ) ) |
| 39 |
38
|
ad2antrl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ≤ ( 2 ↑ 𝑛 ) ) |
| 40 |
31
|
nnzd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∈ ℤ ) |
| 41 |
|
simprr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ∥ 𝑎 ) |
| 42 |
|
dvdsle |
⊢ ( ( ( 2 ↑ 𝑛 ) ∈ ℤ ∧ 𝑎 ∈ ℕ ) → ( ( 2 ↑ 𝑛 ) ∥ 𝑎 → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) ) |
| 43 |
42
|
imp |
⊢ ( ( ( ( 2 ↑ 𝑛 ) ∈ ℤ ∧ 𝑎 ∈ ℕ ) ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) |
| 44 |
40 33 41 43
|
syl21anc |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → ( 2 ↑ 𝑛 ) ≤ 𝑎 ) |
| 45 |
29 32 34 39 44
|
letrd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑛 ∈ ℕ0 ∧ ( 2 ↑ 𝑛 ) ∥ 𝑎 ) ) → 𝑛 ≤ 𝑎 ) |
| 46 |
27 45
|
sylan2b |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ≤ 𝑎 ) |
| 47 |
46
|
ralrimiva |
⊢ ( 𝑎 ∈ ℕ → ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑎 ) |
| 48 |
|
brralrspcev |
⊢ ( ( 𝑎 ∈ ℤ ∧ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑎 ) → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑚 ) |
| 49 |
24 47 48
|
syl2anc |
⊢ ( 𝑎 ∈ ℕ → ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑚 ) |
| 50 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 51 |
50
|
uzsupss |
⊢ ( ( 0 ∈ ℤ ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ∧ ∃ 𝑚 ∈ ℤ ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 ≤ 𝑚 ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
| 52 |
21 23 49 51
|
syl3anc |
⊢ ( 𝑎 ∈ ℕ → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
| 53 |
20 52
|
supcl |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) |
| 54 |
15 53
|
nnexpcld |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) |
| 55 |
|
fzfi |
⊢ ( 0 ... 𝑎 ) ∈ Fin |
| 56 |
|
0zd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 0 ∈ ℤ ) |
| 57 |
24
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑎 ∈ ℤ ) |
| 58 |
27 28
|
sylan2b |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ℕ0 ) |
| 59 |
58
|
nn0zd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ℤ ) |
| 60 |
58
|
nn0ge0d |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 0 ≤ 𝑛 ) |
| 61 |
56 57 59 60 46
|
elfzd |
⊢ ( ( 𝑎 ∈ ℕ ∧ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) → 𝑛 ∈ ( 0 ... 𝑎 ) ) |
| 62 |
61
|
ex |
⊢ ( 𝑎 ∈ ℕ → ( 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → 𝑛 ∈ ( 0 ... 𝑎 ) ) ) |
| 63 |
62
|
ssrdv |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ( 0 ... 𝑎 ) ) |
| 64 |
|
ssfi |
⊢ ( ( ( 0 ... 𝑎 ) ∈ Fin ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ( 0 ... 𝑎 ) ) → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ) |
| 65 |
55 63 64
|
sylancr |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ) |
| 66 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 67 |
66
|
a1i |
⊢ ( 𝑎 ∈ ℕ → 0 ∈ ℕ0 ) |
| 68 |
|
2cn |
⊢ 2 ∈ ℂ |
| 69 |
|
exp0 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 0 ) = 1 ) |
| 70 |
68 69
|
ax-mp |
⊢ ( 2 ↑ 0 ) = 1 |
| 71 |
|
1dvds |
⊢ ( 𝑎 ∈ ℤ → 1 ∥ 𝑎 ) |
| 72 |
24 71
|
syl |
⊢ ( 𝑎 ∈ ℕ → 1 ∥ 𝑎 ) |
| 73 |
70 72
|
eqbrtrid |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ 0 ) ∥ 𝑎 ) |
| 74 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 0 ) ) |
| 75 |
74
|
breq1d |
⊢ ( 𝑘 = 0 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 0 ) ∥ 𝑎 ) ) |
| 76 |
75
|
elrab |
⊢ ( 0 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 0 ∈ ℕ0 ∧ ( 2 ↑ 0 ) ∥ 𝑎 ) ) |
| 77 |
67 73 76
|
sylanbrc |
⊢ ( 𝑎 ∈ ℕ → 0 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
| 78 |
77
|
ne0d |
⊢ ( 𝑎 ∈ ℕ → { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ≠ ∅ ) |
| 79 |
|
fisupcl |
⊢ ( ( < Or ℕ0 ∧ ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ∈ Fin ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ≠ ∅ ∧ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ⊆ ℕ0 ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
| 80 |
20 65 78 23 79
|
syl13anc |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
| 81 |
|
oveq2 |
⊢ ( 𝑘 = 𝑙 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑙 ) ) |
| 82 |
81
|
breq1d |
⊢ ( 𝑘 = 𝑙 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑙 ) ∥ 𝑎 ) ) |
| 83 |
82
|
cbvrabv |
⊢ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } = { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } |
| 84 |
80 83
|
eleqtrdi |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ) |
| 85 |
|
oveq2 |
⊢ ( 𝑙 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → ( 2 ↑ 𝑙 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
| 86 |
85
|
breq1d |
⊢ ( 𝑙 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → ( ( 2 ↑ 𝑙 ) ∥ 𝑎 ↔ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) ) |
| 87 |
86
|
elrab |
⊢ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) ) |
| 88 |
84 87
|
sylib |
⊢ ( 𝑎 ∈ ℕ → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) ) |
| 89 |
88
|
simprd |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) |
| 90 |
|
nndivdvds |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ↔ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) ) |
| 91 |
90
|
biimpa |
⊢ ( ( ( 𝑎 ∈ ℕ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℕ ) ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∥ 𝑎 ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) |
| 92 |
14 54 89 91
|
syl21anc |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ) |
| 93 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 94 |
93
|
a1i |
⊢ ( 𝑎 ∈ ℕ → 1 ∈ ℕ0 ) |
| 95 |
53 94
|
nn0addcld |
⊢ ( 𝑎 ∈ ℕ → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ) |
| 96 |
53
|
nn0red |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℝ ) |
| 97 |
96
|
ltp1d |
⊢ ( 𝑎 ∈ ℕ → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) |
| 98 |
20 52
|
supub |
⊢ ( 𝑎 ∈ ℕ → ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ) |
| 99 |
97 98
|
mt2d |
⊢ ( 𝑎 ∈ ℕ → ¬ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
| 100 |
83
|
eleq2i |
⊢ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ) |
| 101 |
99 100
|
sylnib |
⊢ ( 𝑎 ∈ ℕ → ¬ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ) |
| 102 |
|
oveq2 |
⊢ ( 𝑙 = ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) → ( 2 ↑ 𝑙 ) = ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ) |
| 103 |
102
|
breq1d |
⊢ ( 𝑙 = ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) → ( ( 2 ↑ 𝑙 ) ∥ 𝑎 ↔ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
| 104 |
103
|
elrab |
⊢ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ { 𝑙 ∈ ℕ0 ∣ ( 2 ↑ 𝑙 ) ∥ 𝑎 } ↔ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
| 105 |
101 104
|
sylnib |
⊢ ( 𝑎 ∈ ℕ → ¬ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
| 106 |
|
imnan |
⊢ ( ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ↔ ¬ ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
| 107 |
105 106
|
sylibr |
⊢ ( 𝑎 ∈ ℕ → ( ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ∈ ℕ0 → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) ) |
| 108 |
95 107
|
mpd |
⊢ ( 𝑎 ∈ ℕ → ¬ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ) |
| 109 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ) |
| 110 |
68 53 109
|
sylancr |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ) |
| 111 |
110
|
breq1d |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) + 1 ) ) ∥ 𝑎 ↔ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ) ) |
| 112 |
108 111
|
mtbid |
⊢ ( 𝑎 ∈ ℕ → ¬ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ) |
| 113 |
|
nncn |
⊢ ( 𝑎 ∈ ℕ → 𝑎 ∈ ℂ ) |
| 114 |
54
|
nncnd |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℂ ) |
| 115 |
54
|
nnne0d |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) |
| 116 |
113 114 115
|
divcan2d |
⊢ ( 𝑎 ∈ ℕ → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = 𝑎 ) |
| 117 |
116
|
eqcomd |
⊢ ( 𝑎 ∈ ℕ → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 118 |
117
|
breq2d |
⊢ ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ↔ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) ) |
| 119 |
15
|
nnzd |
⊢ ( 𝑎 ∈ ℕ → 2 ∈ ℤ ) |
| 120 |
92
|
nnzd |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ) |
| 121 |
54
|
nnzd |
⊢ ( 𝑎 ∈ ℕ → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℤ ) |
| 122 |
|
dvdscmulr |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ∧ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℤ ∧ ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) ) → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 123 |
119 120 121 115 122
|
syl112anc |
⊢ ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 124 |
118 123
|
bitrd |
⊢ ( 𝑎 ∈ ℕ → ( ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · 2 ) ∥ 𝑎 ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 125 |
112 124
|
mtbid |
⊢ ( 𝑎 ∈ ℕ → ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
| 126 |
|
breq2 |
⊢ ( 𝑧 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 2 ∥ 𝑧 ↔ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 127 |
126
|
notbid |
⊢ ( 𝑧 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 128 |
127 1
|
elrab2 |
⊢ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ↔ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℕ ∧ ¬ 2 ∥ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 129 |
92 125 128
|
sylanbrc |
⊢ ( 𝑎 ∈ ℕ → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ) |
| 130 |
129 53
|
jca |
⊢ ( 𝑎 ∈ ℕ → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) ) |
| 131 |
130
|
adantl |
⊢ ( ( ⊤ ∧ 𝑎 ∈ ℕ ) → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) ) |
| 132 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 133 |
3
|
a1i |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 2 ∈ ℕ ) |
| 134 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ ℕ0 ) |
| 135 |
133 134
|
nnexpcld |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 136 |
8
|
sseli |
⊢ ( 𝑥 ∈ 𝐽 → 𝑥 ∈ ℕ ) |
| 137 |
136
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℕ ) |
| 138 |
135 137
|
nnmulcld |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) ∈ ℕ ) |
| 139 |
132 138
|
eqeltrd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 ∈ ℕ ) |
| 140 |
|
simplll |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ 𝐽 ) |
| 141 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 2 ∥ 𝑧 ↔ 2 ∥ 𝑥 ) ) |
| 142 |
141
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑥 ) ) |
| 143 |
142 1
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐽 ↔ ( 𝑥 ∈ ℕ ∧ ¬ 2 ∥ 𝑥 ) ) |
| 144 |
143
|
simprbi |
⊢ ( 𝑥 ∈ 𝐽 → ¬ 2 ∥ 𝑥 ) |
| 145 |
|
2z |
⊢ 2 ∈ ℤ |
| 146 |
134
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℕ0 ) |
| 147 |
146
|
nn0zd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℤ ) |
| 148 |
19
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → < Or ℕ0 ) |
| 149 |
139 52
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
| 150 |
149
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ∃ 𝑚 ∈ ℕ0 ( ∀ 𝑛 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ¬ 𝑚 < 𝑛 ∧ ∀ 𝑛 ∈ ℕ0 ( 𝑛 < 𝑚 → ∃ 𝑜 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } 𝑛 < 𝑜 ) ) ) |
| 151 |
148 150
|
supcl |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) |
| 152 |
151
|
nn0zd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) |
| 153 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
| 154 |
|
znnsub |
⊢ ( ( 𝑦 ∈ ℤ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) → ( 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ↔ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) ) |
| 155 |
154
|
biimpa |
⊢ ( ( ( 𝑦 ∈ ℤ ∧ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℤ ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) |
| 156 |
147 152 153 155
|
syl21anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) |
| 157 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ ) → 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) |
| 158 |
145 156 157
|
sylancr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) |
| 159 |
145
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∈ ℤ ) |
| 160 |
139 120
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ) |
| 161 |
160
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ) |
| 162 |
156
|
nnnn0d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ0 ) |
| 163 |
|
zexpcl |
⊢ ( ( 2 ∈ ℤ ∧ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ∈ ℕ0 ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) |
| 164 |
145 162 163
|
sylancr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) |
| 165 |
|
dvdsmultr2 |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℤ ∧ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℤ ) → ( 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) ) |
| 166 |
159 161 164 165
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ∥ ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) ) |
| 167 |
158 166
|
mpd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
| 168 |
137
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℕ ) |
| 169 |
168
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℂ ) |
| 170 |
|
2cnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∈ ℂ ) |
| 171 |
170 162
|
expcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ∈ ℂ ) |
| 172 |
139
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℕ ) |
| 173 |
172
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℂ ) |
| 174 |
172 114
|
syl |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ∈ ℂ ) |
| 175 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 176 |
175
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ≠ 0 ) |
| 177 |
170 176 152
|
expne0d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ≠ 0 ) |
| 178 |
173 174 177
|
divcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ ℂ ) |
| 179 |
171 178
|
mulcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ∈ ℂ ) |
| 180 |
170 146
|
expcld |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
| 181 |
170 176 147
|
expne0d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 182 |
172 117
|
syl |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 183 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 184 |
146
|
nn0cnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 ∈ ℂ ) |
| 185 |
151
|
nn0cnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℂ ) |
| 186 |
184 185
|
pncan3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
| 187 |
186
|
oveq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
| 188 |
170 162 146
|
expaddd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ ( 𝑦 + ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
| 189 |
187 188
|
eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) = ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
| 190 |
189
|
oveq1d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 191 |
182 183 190
|
3eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 192 |
180 171 178
|
mulassd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( ( 2 ↑ 𝑦 ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) = ( ( 2 ↑ 𝑦 ) · ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) ) |
| 193 |
191 192
|
eqtrd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( 2 ↑ 𝑦 ) · ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) ) |
| 194 |
169 179 180 181 193
|
mulcanad |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 195 |
178 171
|
mulcomd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) = ( ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 196 |
194 195
|
eqtr4d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) · ( 2 ↑ ( sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) − 𝑦 ) ) ) ) |
| 197 |
167 196
|
breqtrrd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 2 ∥ 𝑥 ) |
| 198 |
144 197
|
nsyl3 |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ¬ 𝑥 ∈ 𝐽 ) |
| 199 |
140 198
|
pm2.65da |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ¬ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
| 200 |
137
|
nnzd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℤ ) |
| 201 |
135
|
nnzd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℤ ) |
| 202 |
139
|
nnzd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑎 ∈ ℤ ) |
| 203 |
135
|
nncnd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
| 204 |
137
|
nncnd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑥 ∈ ℂ ) |
| 205 |
203 204
|
mulcomd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( 𝑥 · ( 2 ↑ 𝑦 ) ) ) |
| 206 |
132 205
|
eqtr2d |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑥 · ( 2 ↑ 𝑦 ) ) = 𝑎 ) |
| 207 |
|
dvds0lem |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ ( 2 ↑ 𝑦 ) ∈ ℤ ∧ 𝑎 ∈ ℤ ) ∧ ( 𝑥 · ( 2 ↑ 𝑦 ) ) = 𝑎 ) → ( 2 ↑ 𝑦 ) ∥ 𝑎 ) |
| 208 |
200 201 202 206 207
|
syl31anc |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 2 ↑ 𝑦 ) ∥ 𝑎 ) |
| 209 |
|
oveq2 |
⊢ ( 𝑘 = 𝑦 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 𝑦 ) ) |
| 210 |
209
|
breq1d |
⊢ ( 𝑘 = 𝑦 → ( ( 2 ↑ 𝑘 ) ∥ 𝑎 ↔ ( 2 ↑ 𝑦 ) ∥ 𝑎 ) ) |
| 211 |
210
|
elrab |
⊢ ( 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ↔ ( 𝑦 ∈ ℕ0 ∧ ( 2 ↑ 𝑦 ) ∥ 𝑎 ) ) |
| 212 |
134 208 211
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } ) |
| 213 |
19
|
a1i |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → < Or ℕ0 ) |
| 214 |
213 149
|
supub |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 ∈ { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) ) |
| 215 |
212 214
|
mpd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) |
| 216 |
134
|
nn0red |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 ∈ ℝ ) |
| 217 |
139 96
|
syl |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℝ ) |
| 218 |
216 217
|
lttri3d |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ↔ ( ¬ 𝑦 < sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∧ ¬ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) < 𝑦 ) ) ) |
| 219 |
199 215 218
|
mpbir2and |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
| 220 |
|
simplr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 221 |
139
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℕ ) |
| 222 |
221
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑎 ∈ ℂ ) |
| 223 |
137
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℕ ) |
| 224 |
223
|
nncnd |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 ∈ ℂ ) |
| 225 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 226 |
3 225
|
mpan |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℕ ) |
| 227 |
226
|
nncnd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
| 228 |
226
|
nnne0d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 ↑ 𝑦 ) ≠ 0 ) |
| 229 |
227 228
|
jca |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
| 230 |
229
|
ad3antlr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) |
| 231 |
|
divmul2 |
⊢ ( ( 𝑎 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( ( 2 ↑ 𝑦 ) ∈ ℂ ∧ ( 2 ↑ 𝑦 ) ≠ 0 ) ) → ( ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 ↔ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
| 232 |
222 224 230 231
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 ↔ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
| 233 |
220 232
|
mpbird |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ 𝑦 ) ) = 𝑥 ) |
| 234 |
|
simpr |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
| 235 |
234
|
oveq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 2 ↑ 𝑦 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
| 236 |
235
|
oveq2d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → ( 𝑎 / ( 2 ↑ 𝑦 ) ) = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
| 237 |
233 236
|
eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
| 238 |
237
|
ex |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 239 |
219 238
|
jcai |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∧ 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 240 |
239
|
ancomd |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
| 241 |
139 240
|
jca |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) → ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
| 242 |
|
simprl |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
| 243 |
129
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∈ 𝐽 ) |
| 244 |
242 243
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑥 ∈ 𝐽 ) |
| 245 |
|
simprr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) |
| 246 |
53
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ∈ ℕ0 ) |
| 247 |
245 246
|
eqeltrd |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑦 ∈ ℕ0 ) |
| 248 |
117
|
adantr |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑎 = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 249 |
245
|
oveq2d |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( 2 ↑ 𝑦 ) = ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) |
| 250 |
249 242
|
oveq12d |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ( 2 ↑ 𝑦 ) · 𝑥 ) = ( ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) · ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 251 |
248 250
|
eqtr4d |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) |
| 252 |
244 247 251
|
jca31 |
⊢ ( ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) → ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ) |
| 253 |
241 252
|
impbii |
⊢ ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ↔ ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) |
| 254 |
253
|
a1i |
⊢ ( ⊤ → ( ( ( 𝑥 ∈ 𝐽 ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑎 = ( ( 2 ↑ 𝑦 ) · 𝑥 ) ) ↔ ( 𝑎 ∈ ℕ ∧ ( 𝑥 = ( 𝑎 / ( 2 ↑ sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ∧ 𝑦 = sup ( { 𝑘 ∈ ℕ0 ∣ ( 2 ↑ 𝑘 ) ∥ 𝑎 } , ℕ0 , < ) ) ) ) ) |
| 255 |
2 13 131 254
|
f1od2 |
⊢ ( ⊤ → 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ ) |
| 256 |
255
|
mptru |
⊢ 𝐹 : ( 𝐽 × ℕ0 ) –1-1-onto→ ℕ |