| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eupthp1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
eupthp1.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
eupthp1.f |
⊢ ( 𝜑 → Fun 𝐼 ) |
| 4 |
|
eupthp1.a |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 5 |
|
eupthp1.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 6 |
|
eupthp1.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) |
| 7 |
|
eupthp1.d |
⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) |
| 8 |
|
eupthp1.p |
⊢ ( 𝜑 → 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 ) |
| 9 |
|
eupthp1.n |
⊢ 𝑁 = ( ♯ ‘ 𝐹 ) |
| 10 |
|
eupthp1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) |
| 11 |
|
eupthp1.x |
⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) |
| 12 |
|
eupthp1.u |
⊢ ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) |
| 13 |
|
eupthp1.h |
⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) |
| 14 |
|
eupthp1.q |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) |
| 15 |
|
eupthp1.s |
⊢ ( Vtx ‘ 𝑆 ) = 𝑉 |
| 16 |
|
eupthp1.l |
⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) |
| 17 |
|
eupth2eucrct.c |
⊢ ( 𝜑 → 𝐶 = ( 𝑃 ‘ 0 ) ) |
| 18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
eupthp1 |
⊢ ( 𝜑 → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |
| 19 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) |
| 20 |
|
eupthistrl |
⊢ ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ) |
| 22 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 0 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) |
| 24 |
22 23
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) ) |
| 25 |
|
eupthiswlk |
⊢ ( 𝐹 ( EulerPaths ‘ 𝐺 ) 𝑃 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 26 |
8 25
|
syl |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 27 |
12
|
a1i |
⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 28 |
15
|
a1i |
⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) |
| 29 |
1 2 3 4 5 6 7 26 9 10 11 27 13 14 28
|
wlkp1lem5 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 30 |
2
|
wlkf |
⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 31 |
|
lencl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 32 |
9
|
eleq1i |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
| 33 |
|
0elfz |
⊢ ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 34 |
32 33
|
sylbir |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 35 |
31 34
|
syl |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 36 |
8 25 30 35
|
4syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) ) |
| 37 |
24 29 36
|
rspcdva |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑄 ‘ 0 ) = ( 𝑃 ‘ 0 ) ) |
| 39 |
17
|
eqcomd |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = 𝐶 ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑃 ‘ 0 ) = 𝐶 ) |
| 41 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ) |
| 42 |
13
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
| 43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) ) |
| 44 |
|
wrdfin |
⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin ) |
| 45 |
8 25 30 44
|
4syl |
⊢ ( 𝜑 → 𝐹 ∈ Fin ) |
| 46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐹 ∈ Fin ) |
| 47 |
|
snfi |
⊢ { 〈 𝑁 , 𝐵 〉 } ∈ Fin |
| 48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → { 〈 𝑁 , 𝐵 〉 } ∈ Fin ) |
| 49 |
|
wrddm |
⊢ ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 50 |
8 25 30 49
|
4syl |
⊢ ( 𝜑 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 51 |
|
fzonel |
⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 52 |
51
|
a1i |
⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 53 |
9
|
eleq1i |
⊢ ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 54 |
52 53
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 55 |
|
eleq2 |
⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑁 ∈ dom 𝐹 ↔ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 56 |
55
|
notbid |
⊢ ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ¬ 𝑁 ∈ dom 𝐹 ↔ ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 57 |
54 56
|
syl5ibrcom |
⊢ ( 𝜑 → ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ¬ 𝑁 ∈ dom 𝐹 ) ) |
| 58 |
9
|
fvexi |
⊢ 𝑁 ∈ V |
| 59 |
58
|
a1i |
⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 60 |
59 5
|
opeldmd |
⊢ ( 𝜑 → ( 〈 𝑁 , 𝐵 〉 ∈ 𝐹 → 𝑁 ∈ dom 𝐹 ) ) |
| 61 |
57 60
|
nsyld |
⊢ ( 𝜑 → ( dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) ) |
| 62 |
50 61
|
mpd |
⊢ ( 𝜑 → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) |
| 64 |
|
disjsn |
⊢ ( ( 𝐹 ∩ { 〈 𝑁 , 𝐵 〉 } ) = ∅ ↔ ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) |
| 65 |
63 64
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝐹 ∩ { 〈 𝑁 , 𝐵 〉 } ) = ∅ ) |
| 66 |
|
hashun |
⊢ ( ( 𝐹 ∈ Fin ∧ { 〈 𝑁 , 𝐵 〉 } ∈ Fin ∧ ( 𝐹 ∩ { 〈 𝑁 , 𝐵 〉 } ) = ∅ ) → ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) ) |
| 67 |
46 48 65 66
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) = ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) ) |
| 68 |
9
|
eqcomi |
⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 69 |
|
opex |
⊢ 〈 𝑁 , 𝐵 〉 ∈ V |
| 70 |
|
hashsng |
⊢ ( 〈 𝑁 , 𝐵 〉 ∈ V → ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) = 1 ) |
| 71 |
69 70
|
ax-mp |
⊢ ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) = 1 |
| 72 |
68 71
|
oveq12i |
⊢ ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) = ( 𝑁 + 1 ) |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ( ♯ ‘ 𝐹 ) + ( ♯ ‘ { 〈 𝑁 , 𝐵 〉 } ) ) = ( 𝑁 + 1 ) ) |
| 74 |
43 67 73
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
| 75 |
41 74
|
fveq12d |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) ) |
| 76 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ V ) |
| 77 |
1 2 3 4 5 6 7 26 9
|
wlkp1lem1 |
⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| 78 |
76 6 77
|
3jca |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) ) |
| 80 |
|
fsnunfv |
⊢ ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 82 |
75 81
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐶 = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 83 |
38 40 82
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) |
| 84 |
|
iscrct |
⊢ ( 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ( Trails ‘ 𝑆 ) 𝑄 ∧ ( 𝑄 ‘ 0 ) = ( 𝑄 ‘ ( ♯ ‘ 𝐻 ) ) ) ) |
| 85 |
21 83 84
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) |
| 86 |
19 85
|
jca |
⊢ ( ( 𝜑 ∧ 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ) → ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ∧ 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) ) |
| 87 |
18 86
|
mpdan |
⊢ ( 𝜑 → ( 𝐻 ( EulerPaths ‘ 𝑆 ) 𝑄 ∧ 𝐻 ( Circuits ‘ 𝑆 ) 𝑄 ) ) |