Step |
Hyp |
Ref |
Expression |
1 |
|
exrecfnlem.1 |
⊢ 𝐹 = ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) ) |
2 |
|
rdg0g |
⊢ ( 𝐴 ∈ 𝑉 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |
3 |
|
peano1 |
⊢ ∅ ∈ ω |
4 |
|
omelon |
⊢ ω ∈ On |
5 |
|
limom |
⊢ Lim ω |
6 |
|
rdglimss |
⊢ ( ( ( ω ∈ On ∧ Lim ω ) ∧ ∅ ∈ ω ) → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) |
7 |
4 5 6
|
mpanl12 |
⊢ ( ∅ ∈ ω → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) |
8 |
3 7
|
ax-mp |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) |
9 |
2 8
|
eqsstrrdi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) |
10 |
|
rdglim2a |
⊢ ( ( ω ∈ On ∧ Lim ω ) → ( rec ( 𝐹 , 𝐴 ) ‘ ω ) = ∪ 𝑢 ∈ ω ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ) |
11 |
4 5 10
|
mp2an |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) = ∪ 𝑢 ∈ ω ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) |
12 |
11
|
eleq2i |
⊢ ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ↔ 𝑦 ∈ ∪ 𝑢 ∈ ω ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ) |
13 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑢 ∈ ω ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↔ ∃ 𝑢 ∈ ω 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ) |
14 |
12 13
|
bitri |
⊢ ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ↔ ∃ 𝑢 ∈ ω 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ) |
15 |
|
peano2 |
⊢ ( 𝑢 ∈ ω → suc 𝑢 ∈ ω ) |
16 |
|
nnon |
⊢ ( 𝑢 ∈ ω → 𝑢 ∈ On ) |
17 |
|
eqid |
⊢ ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) = ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) |
18 |
17
|
elrnmpt1 |
⊢ ( ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) |
19 |
|
elun2 |
⊢ ( 𝐵 ∈ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) → 𝐵 ∈ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ) |
21 |
|
fvex |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∈ V |
22 |
|
nfcv |
⊢ Ⅎ 𝑦 V |
23 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
24 |
|
nfmpt1 |
⊢ Ⅎ 𝑦 ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) |
25 |
24
|
nfrn |
⊢ Ⅎ 𝑦 ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) |
26 |
23 25
|
nfun |
⊢ Ⅎ 𝑦 ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) |
27 |
22 26
|
nfmpt |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) ) |
28 |
1 27
|
nfcxfr |
⊢ Ⅎ 𝑦 𝐹 |
29 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
30 |
28 29
|
nfrdg |
⊢ Ⅎ 𝑦 rec ( 𝐹 , 𝐴 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑢 |
32 |
30 31
|
nffv |
⊢ Ⅎ 𝑦 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) |
33 |
32
|
mptexgf |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∈ V → ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ∈ V ) |
34 |
21 33
|
ax-mp |
⊢ ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ∈ V |
35 |
34
|
rnex |
⊢ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ∈ V |
36 |
21 35
|
unex |
⊢ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ∈ V |
37 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐴 |
38 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑢 |
39 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) ) |
40 |
1 39
|
nfcxfr |
⊢ Ⅎ 𝑧 𝐹 |
41 |
40 37
|
nfrdg |
⊢ Ⅎ 𝑧 rec ( 𝐹 , 𝐴 ) |
42 |
41 38
|
nffv |
⊢ Ⅎ 𝑧 ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) |
43 |
|
nfcv |
⊢ Ⅎ 𝑧 𝐵 |
44 |
42 43
|
nfmpt |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) |
45 |
44
|
nfrn |
⊢ Ⅎ 𝑧 ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) |
46 |
42 45
|
nfun |
⊢ Ⅎ 𝑧 ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) |
47 |
|
rdgeq1 |
⊢ ( 𝐹 = ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) ) → rec ( 𝐹 , 𝐴 ) = rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) ) , 𝐴 ) ) |
48 |
1 47
|
ax-mp |
⊢ rec ( 𝐹 , 𝐴 ) = rec ( ( 𝑧 ∈ V ↦ ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) ) , 𝐴 ) |
49 |
|
id |
⊢ ( 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ) |
50 |
32
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) |
51 |
|
eqidd |
⊢ ( 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → 𝐵 = 𝐵 ) |
52 |
50 49 51
|
mpteq12df |
⊢ ( 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) = ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) |
53 |
52
|
rneqd |
⊢ ( 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) = ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) |
54 |
49 53
|
uneq12d |
⊢ ( 𝑧 = ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → ( 𝑧 ∪ ran ( 𝑦 ∈ 𝑧 ↦ 𝐵 ) ) = ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ) |
55 |
37 38 46 48 54
|
rdgsucmptf |
⊢ ( ( 𝑢 ∈ On ∧ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ∈ V ) → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) = ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ) |
56 |
36 55
|
mpan2 |
⊢ ( 𝑢 ∈ On → ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) = ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ) |
57 |
56
|
eleq2d |
⊢ ( 𝑢 ∈ On → ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) ↔ 𝐵 ∈ ( ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∪ ran ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ↦ 𝐵 ) ) ) ) |
58 |
20 57
|
syl5ibr |
⊢ ( 𝑢 ∈ On → ( ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) ) ) |
59 |
16 58
|
syl |
⊢ ( 𝑢 ∈ ω → ( ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) ) ) |
60 |
|
rdgellim |
⊢ ( ( ( ω ∈ On ∧ Lim ω ) ∧ suc 𝑢 ∈ ω ) → ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
61 |
4 5 60
|
mpanl12 |
⊢ ( suc 𝑢 ∈ ω → ( 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ suc 𝑢 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
62 |
15 59 61
|
sylsyld |
⊢ ( 𝑢 ∈ ω → ( ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) ∧ 𝐵 ∈ 𝑊 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
63 |
62
|
expd |
⊢ ( 𝑢 ∈ ω → ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → ( 𝐵 ∈ 𝑊 → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) ) |
64 |
63
|
com3r |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝑢 ∈ ω → ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) ) |
65 |
64
|
rexlimdv |
⊢ ( 𝐵 ∈ 𝑊 → ( ∃ 𝑢 ∈ ω 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ 𝑢 ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
66 |
14 65
|
syl5bi |
⊢ ( 𝐵 ∈ 𝑊 → ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
67 |
66
|
alimi |
⊢ ( ∀ 𝑦 𝐵 ∈ 𝑊 → ∀ 𝑦 ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
68 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
69 |
67 68
|
sylibr |
⊢ ( ∀ 𝑦 𝐵 ∈ 𝑊 → ∀ 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) |
70 |
|
fvex |
⊢ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ∈ V |
71 |
|
sseq2 |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
72 |
|
nfcv |
⊢ Ⅎ 𝑦 ω |
73 |
30 72
|
nffv |
⊢ Ⅎ 𝑦 ( rec ( 𝐹 , 𝐴 ) ‘ ω ) |
74 |
73
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) |
75 |
|
eleq2 |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
76 |
|
eleq2 |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( 𝐵 ∈ 𝑥 ↔ 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
77 |
75 76
|
imbi12d |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( ( 𝑦 ∈ 𝑥 → 𝐵 ∈ 𝑥 ) ↔ ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) ) |
78 |
74 77
|
albid |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝐵 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) ) |
79 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑥 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝐵 ∈ 𝑥 ) ) |
80 |
78 79 68
|
3bitr4g |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( ∀ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑥 ↔ ∀ 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) |
81 |
71 80
|
anbi12d |
⊢ ( 𝑥 = ( rec ( 𝐹 , 𝐴 ) ‘ ω ) → ( ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑥 ) ↔ ( 𝐴 ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ∧ ∀ 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) ) ) |
82 |
70 81
|
spcev |
⊢ ( ( 𝐴 ⊆ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ∧ ∀ 𝑦 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) 𝐵 ∈ ( rec ( 𝐹 , 𝐴 ) ‘ ω ) ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑥 ) ) |
83 |
9 69 82
|
syl2an |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 𝐵 ∈ 𝑊 ) → ∃ 𝑥 ( 𝐴 ⊆ 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 𝐵 ∈ 𝑥 ) ) |