Metamath Proof Explorer


Theorem f1iun

Description: The union of a chain (with respect to inclusion) of one-to-one functions is a one-to-one function. (Contributed by Mario Carneiro, 20-May-2013) (Revised by Mario Carneiro, 24-Jun-2015) (Proof shortened by AV, 5-Nov-2023)

Ref Expression
Hypotheses fiun.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
fiun.2 𝐵 ∈ V
Assertion f1iun ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → 𝑥𝐴 𝐵 : 𝑥𝐴 𝐷1-1𝑆 )

Proof

Step Hyp Ref Expression
1 fiun.1 ( 𝑥 = 𝑦𝐵 = 𝐶 )
2 fiun.2 𝐵 ∈ V
3 vex 𝑢 ∈ V
4 eqeq1 ( 𝑧 = 𝑢 → ( 𝑧 = 𝐵𝑢 = 𝐵 ) )
5 4 rexbidv ( 𝑧 = 𝑢 → ( ∃ 𝑥𝐴 𝑧 = 𝐵 ↔ ∃ 𝑥𝐴 𝑢 = 𝐵 ) )
6 3 5 elab ( 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ↔ ∃ 𝑥𝐴 𝑢 = 𝐵 )
7 r19.29 ( ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ ∃ 𝑥𝐴 𝑢 = 𝐵 ) → ∃ 𝑥𝐴 ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) )
8 nfv 𝑥 ( Fun 𝑢 ∧ Fun 𝑢 )
9 nfre1 𝑥𝑥𝐴 𝑧 = 𝐵
10 9 nfab 𝑥 { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 }
11 nfv 𝑥 ( 𝑢𝑣𝑣𝑢 )
12 10 11 nfralw 𝑥𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 )
13 8 12 nfan 𝑥 ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) )
14 f1eq1 ( 𝑢 = 𝐵 → ( 𝑢 : 𝐷1-1𝑆𝐵 : 𝐷1-1𝑆 ) )
15 14 biimparc ( ( 𝐵 : 𝐷1-1𝑆𝑢 = 𝐵 ) → 𝑢 : 𝐷1-1𝑆 )
16 df-f1 ( 𝑢 : 𝐷1-1𝑆 ↔ ( 𝑢 : 𝐷𝑆 ∧ Fun 𝑢 ) )
17 ffun ( 𝑢 : 𝐷𝑆 → Fun 𝑢 )
18 17 anim1i ( ( 𝑢 : 𝐷𝑆 ∧ Fun 𝑢 ) → ( Fun 𝑢 ∧ Fun 𝑢 ) )
19 16 18 sylbi ( 𝑢 : 𝐷1-1𝑆 → ( Fun 𝑢 ∧ Fun 𝑢 ) )
20 15 19 syl ( ( 𝐵 : 𝐷1-1𝑆𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ Fun 𝑢 ) )
21 20 adantlr ( ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( Fun 𝑢 ∧ Fun 𝑢 ) )
22 f1f ( 𝐵 : 𝐷1-1𝑆𝐵 : 𝐷𝑆 )
23 1 fiunlem ( ( ( 𝐵 : 𝐷𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) )
24 22 23 sylanl1 ( ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) )
25 21 24 jca ( ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) )
26 25 a1i ( 𝑥𝐴 → ( ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) ) )
27 13 26 rexlimi ( ∃ 𝑥𝐴 ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) )
28 7 27 syl ( ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ ∃ 𝑥𝐴 𝑢 = 𝐵 ) → ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) )
29 6 28 sylan2b ( ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) ∧ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ) → ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) )
30 29 ralrimiva ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) )
31 fun11uni ( ∀ 𝑢 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( ( Fun 𝑢 ∧ Fun 𝑢 ) ∧ ∀ 𝑣 ∈ { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ( 𝑢𝑣𝑣𝑢 ) ) → ( Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ∧ Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ) )
32 30 31 syl ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ( Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ∧ Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } ) )
33 32 simpld ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } )
34 2 dfiun2 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 }
35 34 funeqi ( Fun 𝑥𝐴 𝐵 ↔ Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } )
36 33 35 sylibr ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → Fun 𝑥𝐴 𝐵 )
37 3 eldm2 ( 𝑢 ∈ dom 𝐵 ↔ ∃ 𝑣𝑢 , 𝑣 ⟩ ∈ 𝐵 )
38 f1dm ( 𝐵 : 𝐷1-1𝑆 → dom 𝐵 = 𝐷 )
39 38 eleq2d ( 𝐵 : 𝐷1-1𝑆 → ( 𝑢 ∈ dom 𝐵𝑢𝐷 ) )
40 37 39 bitr3id ( 𝐵 : 𝐷1-1𝑆 → ( ∃ 𝑣𝑢 , 𝑣 ⟩ ∈ 𝐵𝑢𝐷 ) )
41 40 adantr ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ( ∃ 𝑣𝑢 , 𝑣 ⟩ ∈ 𝐵𝑢𝐷 ) )
42 41 ralrexbid ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ( ∃ 𝑥𝐴𝑣𝑢 , 𝑣 ⟩ ∈ 𝐵 ↔ ∃ 𝑥𝐴 𝑢𝐷 ) )
43 eliun ( ⟨ 𝑢 , 𝑣 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑢 , 𝑣 ⟩ ∈ 𝐵 )
44 43 exbii ( ∃ 𝑣𝑢 , 𝑣 ⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃ 𝑣𝑥𝐴𝑢 , 𝑣 ⟩ ∈ 𝐵 )
45 3 eldm2 ( 𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃ 𝑣𝑢 , 𝑣 ⟩ ∈ 𝑥𝐴 𝐵 )
46 rexcom4 ( ∃ 𝑥𝐴𝑣𝑢 , 𝑣 ⟩ ∈ 𝐵 ↔ ∃ 𝑣𝑥𝐴𝑢 , 𝑣 ⟩ ∈ 𝐵 )
47 44 45 46 3bitr4i ( 𝑢 ∈ dom 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴𝑣𝑢 , 𝑣 ⟩ ∈ 𝐵 )
48 eliun ( 𝑢 𝑥𝐴 𝐷 ↔ ∃ 𝑥𝐴 𝑢𝐷 )
49 42 47 48 3bitr4g ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ( 𝑢 ∈ dom 𝑥𝐴 𝐵𝑢 𝑥𝐴 𝐷 ) )
50 49 eqrdv ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷 )
51 df-fn ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ↔ ( Fun 𝑥𝐴 𝐵 ∧ dom 𝑥𝐴 𝐵 = 𝑥𝐴 𝐷 ) )
52 36 50 51 sylanbrc ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 )
53 rniun ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
54 22 frnd ( 𝐵 : 𝐷1-1𝑆 → ran 𝐵𝑆 )
55 54 adantr ( ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ran 𝐵𝑆 )
56 55 ralimi ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ∀ 𝑥𝐴 ran 𝐵𝑆 )
57 iunss ( 𝑥𝐴 ran 𝐵𝑆 ↔ ∀ 𝑥𝐴 ran 𝐵𝑆 )
58 56 57 sylibr ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → 𝑥𝐴 ran 𝐵𝑆 )
59 53 58 eqsstrid ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → ran 𝑥𝐴 𝐵𝑆 )
60 df-f ( 𝑥𝐴 𝐵 : 𝑥𝐴 𝐷𝑆 ↔ ( 𝑥𝐴 𝐵 Fn 𝑥𝐴 𝐷 ∧ ran 𝑥𝐴 𝐵𝑆 ) )
61 52 59 60 sylanbrc ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → 𝑥𝐴 𝐵 : 𝑥𝐴 𝐷𝑆 )
62 32 simprd ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } )
63 34 cnveqi 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 }
64 63 funeqi ( Fun 𝑥𝐴 𝐵 ↔ Fun { 𝑧 ∣ ∃ 𝑥𝐴 𝑧 = 𝐵 } )
65 62 64 sylibr ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → Fun 𝑥𝐴 𝐵 )
66 df-f1 ( 𝑥𝐴 𝐵 : 𝑥𝐴 𝐷1-1𝑆 ↔ ( 𝑥𝐴 𝐵 : 𝑥𝐴 𝐷𝑆 ∧ Fun 𝑥𝐴 𝐵 ) )
67 61 65 66 sylanbrc ( ∀ 𝑥𝐴 ( 𝐵 : 𝐷1-1𝑆 ∧ ∀ 𝑦𝐴 ( 𝐵𝐶𝐶𝐵 ) ) → 𝑥𝐴 𝐵 : 𝑥𝐴 𝐷1-1𝑆 )