| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elun1 |
⊢ ( 𝑥 ∈ 𝐹 → 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ) |
| 2 |
|
elun2 |
⊢ ( 𝑦 ∈ 𝐺 → 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) |
| 3 |
1 2
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺 ) → ( 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) ) |
| 4 |
|
fbasssin |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 5 |
4
|
3expb |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∧ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 6 |
3 5
|
sylan2 |
⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐺 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 7 |
6
|
ralrimivva |
⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 8 |
|
fbsspw |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 10 |
|
fbsspw |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → 𝐺 ⊆ 𝒫 𝑋 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝐺 ⊆ 𝒫 𝑋 ) |
| 12 |
9 11
|
unssd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ) |
| 13 |
12
|
a1d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ) ) |
| 14 |
|
ssun1 |
⊢ 𝐹 ⊆ ( 𝐹 ∪ 𝐺 ) |
| 15 |
|
fbasne0 |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ≠ ∅ ) |
| 16 |
|
ssn0 |
⊢ ( ( 𝐹 ⊆ ( 𝐹 ∪ 𝐺 ) ∧ 𝐹 ≠ ∅ ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) |
| 17 |
14 15 16
|
sylancr |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) |
| 19 |
18
|
a1d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝐹 ∪ 𝐺 ) ≠ ∅ ) ) |
| 20 |
|
0nelfb |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐹 ) |
| 21 |
|
0nelfb |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐺 ) |
| 22 |
|
df-nel |
⊢ ( ∅ ∉ ( 𝐹 ∪ 𝐺 ) ↔ ¬ ∅ ∈ ( 𝐹 ∪ 𝐺 ) ) |
| 23 |
|
elun |
⊢ ( ∅ ∈ ( 𝐹 ∪ 𝐺 ) ↔ ( ∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺 ) ) |
| 24 |
23
|
notbii |
⊢ ( ¬ ∅ ∈ ( 𝐹 ∪ 𝐺 ) ↔ ¬ ( ∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺 ) ) |
| 25 |
|
ioran |
⊢ ( ¬ ( ∅ ∈ 𝐹 ∨ ∅ ∈ 𝐺 ) ↔ ( ¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺 ) ) |
| 26 |
22 24 25
|
3bitri |
⊢ ( ∅ ∉ ( 𝐹 ∪ 𝐺 ) ↔ ( ¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺 ) ) |
| 27 |
26
|
biimpri |
⊢ ( ( ¬ ∅ ∈ 𝐹 ∧ ¬ ∅ ∈ 𝐺 ) → ∅ ∉ ( 𝐹 ∪ 𝐺 ) ) |
| 28 |
20 21 27
|
syl2an |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ∅ ∉ ( 𝐹 ∪ 𝐺 ) ) |
| 29 |
28
|
a1d |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∅ ∉ ( 𝐹 ∪ 𝐺 ) ) ) |
| 30 |
|
fbasssin |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 31 |
|
ssrexv |
⊢ ( 𝐹 ⊆ ( 𝐹 ∪ 𝐺 ) → ( ∃ 𝑧 ∈ 𝐹 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 32 |
14 30 31
|
mpsyl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 33 |
32
|
3expb |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑦 ∈ 𝐹 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 34 |
33
|
ralrimivva |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 36 |
|
pm3.2 |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 38 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 39 |
|
ralun |
⊢ ( ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 40 |
39
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐹 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 41 |
38 40
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 42 |
37 41
|
syl6 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 43 |
|
ralcom |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐺 ∀ 𝑥 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 44 |
|
ineq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∩ 𝑦 ) = ( 𝑤 ∩ 𝑦 ) ) |
| 45 |
44
|
sseq2d |
⊢ ( 𝑥 = 𝑤 → ( 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) ) |
| 46 |
45
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) ) |
| 47 |
46
|
cbvralvw |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) |
| 48 |
47
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐺 ∀ 𝑥 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐺 ∀ 𝑤 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ) |
| 49 |
|
ineq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑤 ∩ 𝑦 ) = ( 𝑤 ∩ 𝑥 ) ) |
| 50 |
49
|
sseq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ↔ 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ) ) |
| 51 |
50
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ) ) |
| 52 |
|
ineq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∩ 𝑥 ) = ( 𝑦 ∩ 𝑥 ) ) |
| 53 |
|
incom |
⊢ ( 𝑦 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) |
| 54 |
52 53
|
eqtrdi |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∩ 𝑥 ) = ( 𝑥 ∩ 𝑦 ) ) |
| 55 |
54
|
sseq2d |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ↔ 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 56 |
55
|
rexbidv |
⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑥 ) ↔ ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 57 |
51 56
|
cbvral2vw |
⊢ ( ∀ 𝑦 ∈ 𝐺 ∀ 𝑤 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑤 ∩ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 58 |
43 48 57
|
3bitri |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 59 |
58
|
biimpi |
⊢ ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 60 |
|
ssun2 |
⊢ 𝐺 ⊆ ( 𝐹 ∪ 𝐺 ) |
| 61 |
|
fbasssin |
⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) → ∃ 𝑧 ∈ 𝐺 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 62 |
|
ssrexv |
⊢ ( 𝐺 ⊆ ( 𝐹 ∪ 𝐺 ) → ( ∃ 𝑧 ∈ 𝐺 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 63 |
60 61 62
|
mpsyl |
⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 64 |
63
|
3expb |
⊢ ( ( 𝐺 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐺 ∧ 𝑦 ∈ 𝐺 ) ) → ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 65 |
64
|
ralrimivva |
⊢ ( 𝐺 ∈ ( fBas ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 66 |
65
|
adantl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 67 |
59 66
|
anim12i |
⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) ) → ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 68 |
67
|
expcom |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 69 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐺 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 70 |
39
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐺 ( ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 71 |
69 70
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐹 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 72 |
68 71
|
syl6 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 73 |
42 72
|
jcad |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 74 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ∧ ∀ 𝑥 ∈ 𝐺 ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) → ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) |
| 75 |
73 74
|
syl6 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |
| 76 |
19 29 75
|
3jcad |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) |
| 77 |
13 76
|
jcad |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 78 |
|
elfvdm |
⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝑋 ∈ dom fBas ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → 𝑋 ∈ dom fBas ) |
| 80 |
|
isfbas2 |
⊢ ( 𝑋 ∈ dom fBas → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ( ( 𝐹 ∪ 𝐺 ) ⊆ 𝒫 𝑋 ∧ ( ( 𝐹 ∪ 𝐺 ) ≠ ∅ ∧ ∅ ∉ ( 𝐹 ∪ 𝐺 ) ∧ ∀ 𝑥 ∈ ( 𝐹 ∪ 𝐺 ) ∀ 𝑦 ∈ ( 𝐹 ∪ 𝐺 ) ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) ) ) |
| 82 |
77 81
|
sylibrd |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) → ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ) ) |
| 83 |
7 82
|
impbid2 |
⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐺 ∈ ( fBas ‘ 𝑋 ) ) → ( ( 𝐹 ∪ 𝐺 ) ∈ ( fBas ‘ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝐹 ∀ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ ( 𝐹 ∪ 𝐺 ) 𝑧 ⊆ ( 𝑥 ∩ 𝑦 ) ) ) |