Metamath Proof Explorer


Theorem fmucnd

Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017)

Ref Expression
Hypotheses fmucnd.1 ( 𝜑𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
fmucnd.2 ( 𝜑𝑉 ∈ ( UnifOn ‘ 𝑌 ) )
fmucnd.3 ( 𝜑𝐹 ∈ ( 𝑈 Cnu 𝑉 ) )
fmucnd.4 ( 𝜑𝐶 ∈ ( CauFilu𝑈 ) )
fmucnd.5 𝐷 = ran ( 𝑎𝐶 ↦ ( 𝐹𝑎 ) )
Assertion fmucnd ( 𝜑𝐷 ∈ ( CauFilu𝑉 ) )

Proof

Step Hyp Ref Expression
1 fmucnd.1 ( 𝜑𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
2 fmucnd.2 ( 𝜑𝑉 ∈ ( UnifOn ‘ 𝑌 ) )
3 fmucnd.3 ( 𝜑𝐹 ∈ ( 𝑈 Cnu 𝑉 ) )
4 fmucnd.4 ( 𝜑𝐶 ∈ ( CauFilu𝑈 ) )
5 fmucnd.5 𝐷 = ran ( 𝑎𝐶 ↦ ( 𝐹𝑎 ) )
6 cfilufbas ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu𝑈 ) ) → 𝐶 ∈ ( fBas ‘ 𝑋 ) )
7 1 4 6 syl2anc ( 𝜑𝐶 ∈ ( fBas ‘ 𝑋 ) )
8 isucn ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ↔ ( 𝐹 : 𝑋𝑌 ∧ ∀ 𝑣𝑉𝑟𝑈𝑥𝑋𝑦𝑋 ( 𝑥 𝑟 𝑦 → ( 𝐹𝑥 ) 𝑣 ( 𝐹𝑦 ) ) ) ) )
9 8 simprbda ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑉 ∈ ( UnifOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) ) → 𝐹 : 𝑋𝑌 )
10 1 2 3 9 syl21anc ( 𝜑𝐹 : 𝑋𝑌 )
11 2 elfvexd ( 𝜑𝑌 ∈ V )
12 5 fbasrn ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋𝑌𝑌 ∈ V ) → 𝐷 ∈ ( fBas ‘ 𝑌 ) )
13 7 10 11 12 syl3anc ( 𝜑𝐷 ∈ ( fBas ‘ 𝑌 ) )
14 simplr ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → 𝑎𝐶 )
15 eqid ( 𝐹𝑎 ) = ( 𝐹𝑎 )
16 imaeq2 ( 𝑐 = 𝑎 → ( 𝐹𝑐 ) = ( 𝐹𝑎 ) )
17 16 rspceeqv ( ( 𝑎𝐶 ∧ ( 𝐹𝑎 ) = ( 𝐹𝑎 ) ) → ∃ 𝑐𝐶 ( 𝐹𝑎 ) = ( 𝐹𝑐 ) )
18 14 15 17 sylancl ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ∃ 𝑐𝐶 ( 𝐹𝑎 ) = ( 𝐹𝑐 ) )
19 imaexg ( 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) → ( 𝐹𝑎 ) ∈ V )
20 eqid ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) ) = ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) )
21 20 elrnmpt ( ( 𝐹𝑎 ) ∈ V → ( ( 𝐹𝑎 ) ∈ ran ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) ) ↔ ∃ 𝑐𝐶 ( 𝐹𝑎 ) = ( 𝐹𝑐 ) ) )
22 3 19 21 3syl ( 𝜑 → ( ( 𝐹𝑎 ) ∈ ran ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) ) ↔ ∃ 𝑐𝐶 ( 𝐹𝑎 ) = ( 𝐹𝑐 ) ) )
23 22 ad3antrrr ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( ( 𝐹𝑎 ) ∈ ran ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) ) ↔ ∃ 𝑐𝐶 ( 𝐹𝑎 ) = ( 𝐹𝑐 ) ) )
24 18 23 mpbird ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( 𝐹𝑎 ) ∈ ran ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) ) )
25 imaeq2 ( 𝑎 = 𝑐 → ( 𝐹𝑎 ) = ( 𝐹𝑐 ) )
26 25 cbvmptv ( 𝑎𝐶 ↦ ( 𝐹𝑎 ) ) = ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) )
27 26 rneqi ran ( 𝑎𝐶 ↦ ( 𝐹𝑎 ) ) = ran ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) )
28 5 27 eqtri 𝐷 = ran ( 𝑐𝐶 ↦ ( 𝐹𝑐 ) )
29 24 28 eleqtrrdi ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( 𝐹𝑎 ) ∈ 𝐷 )
30 10 ffnd ( 𝜑𝐹 Fn 𝑋 )
31 30 ad3antrrr ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → 𝐹 Fn 𝑋 )
32 fbelss ( ( 𝐶 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑎𝐶 ) → 𝑎𝑋 )
33 7 32 sylan ( ( 𝜑𝑎𝐶 ) → 𝑎𝑋 )
34 33 ad4ant13 ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → 𝑎𝑋 )
35 fmucndlem ( ( 𝐹 Fn 𝑋𝑎𝑋 ) → ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ ( 𝑎 × 𝑎 ) ) = ( ( 𝐹𝑎 ) × ( 𝐹𝑎 ) ) )
36 31 34 35 syl2anc ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ ( 𝑎 × 𝑎 ) ) = ( ( 𝐹𝑎 ) × ( 𝐹𝑎 ) ) )
37 eqid ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ )
38 37 mpofun Fun ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ )
39 funimass2 ( ( Fun ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 )
40 38 39 mpan ( ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) → ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 )
41 40 adantl ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ ( 𝑎 × 𝑎 ) ) ⊆ 𝑣 )
42 36 41 eqsstrrd ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ( ( 𝐹𝑎 ) × ( 𝐹𝑎 ) ) ⊆ 𝑣 )
43 id ( 𝑏 = ( 𝐹𝑎 ) → 𝑏 = ( 𝐹𝑎 ) )
44 43 sqxpeqd ( 𝑏 = ( 𝐹𝑎 ) → ( 𝑏 × 𝑏 ) = ( ( 𝐹𝑎 ) × ( 𝐹𝑎 ) ) )
45 44 sseq1d ( 𝑏 = ( 𝐹𝑎 ) → ( ( 𝑏 × 𝑏 ) ⊆ 𝑣 ↔ ( ( 𝐹𝑎 ) × ( 𝐹𝑎 ) ) ⊆ 𝑣 ) )
46 45 rspcev ( ( ( 𝐹𝑎 ) ∈ 𝐷 ∧ ( ( 𝐹𝑎 ) × ( 𝐹𝑎 ) ) ⊆ 𝑣 ) → ∃ 𝑏𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 )
47 29 42 46 syl2anc ( ( ( ( 𝜑𝑣𝑉 ) ∧ 𝑎𝐶 ) ∧ ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ) → ∃ 𝑏𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 )
48 1 adantr ( ( 𝜑𝑣𝑉 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) )
49 4 adantr ( ( 𝜑𝑣𝑉 ) → 𝐶 ∈ ( CauFilu𝑈 ) )
50 2 adantr ( ( 𝜑𝑣𝑉 ) → 𝑉 ∈ ( UnifOn ‘ 𝑌 ) )
51 3 adantr ( ( 𝜑𝑣𝑉 ) → 𝐹 ∈ ( 𝑈 Cnu 𝑉 ) )
52 simpr ( ( 𝜑𝑣𝑉 ) → 𝑣𝑉 )
53 nfcv 𝑠 ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩
54 nfcv 𝑡 ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩
55 nfcv 𝑥 ⟨ ( 𝐹𝑠 ) , ( 𝐹𝑡 ) ⟩
56 nfcv 𝑦 ⟨ ( 𝐹𝑠 ) , ( 𝐹𝑡 ) ⟩
57 simpl ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → 𝑥 = 𝑠 )
58 57 fveq2d ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → ( 𝐹𝑥 ) = ( 𝐹𝑠 ) )
59 simpr ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → 𝑦 = 𝑡 )
60 59 fveq2d ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → ( 𝐹𝑦 ) = ( 𝐹𝑡 ) )
61 58 60 opeq12d ( ( 𝑥 = 𝑠𝑦 = 𝑡 ) → ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ = ⟨ ( 𝐹𝑠 ) , ( 𝐹𝑡 ) ⟩ )
62 53 54 55 56 61 cbvmpo ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) = ( 𝑠𝑋 , 𝑡𝑋 ↦ ⟨ ( 𝐹𝑠 ) , ( 𝐹𝑡 ) ⟩ )
63 48 50 51 52 62 ucnprima ( ( 𝜑𝑣𝑉 ) → ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ∈ 𝑈 )
64 cfiluexsm ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐶 ∈ ( CauFilu𝑈 ) ∧ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) ∈ 𝑈 ) → ∃ 𝑎𝐶 ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) )
65 48 49 63 64 syl3anc ( ( 𝜑𝑣𝑉 ) → ∃ 𝑎𝐶 ( 𝑎 × 𝑎 ) ⊆ ( ( 𝑥𝑋 , 𝑦𝑋 ↦ ⟨ ( 𝐹𝑥 ) , ( 𝐹𝑦 ) ⟩ ) “ 𝑣 ) )
66 47 65 r19.29a ( ( 𝜑𝑣𝑉 ) → ∃ 𝑏𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 )
67 66 ralrimiva ( 𝜑 → ∀ 𝑣𝑉𝑏𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 )
68 iscfilu ( 𝑉 ∈ ( UnifOn ‘ 𝑌 ) → ( 𝐷 ∈ ( CauFilu𝑉 ) ↔ ( 𝐷 ∈ ( fBas ‘ 𝑌 ) ∧ ∀ 𝑣𝑉𝑏𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) )
69 2 68 syl ( 𝜑 → ( 𝐷 ∈ ( CauFilu𝑉 ) ↔ ( 𝐷 ∈ ( fBas ‘ 𝑌 ) ∧ ∀ 𝑣𝑉𝑏𝐷 ( 𝑏 × 𝑏 ) ⊆ 𝑣 ) ) )
70 13 67 69 mpbir2and ( 𝜑𝐷 ∈ ( CauFilu𝑉 ) )