| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fbasrn.c |
⊢ 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) |
| 2 |
|
simpl3 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑌 ∈ 𝑉 ) |
| 3 |
|
simpl2 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 4 |
|
fimass |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
| 5 |
3 4
|
syl |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
| 6 |
2 5
|
sselpwd |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
| 7 |
6
|
fmpttd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) : 𝐵 ⟶ 𝒫 𝑌 ) |
| 8 |
7
|
frnd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
| 9 |
1 8
|
eqsstrid |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ⊆ 𝒫 𝑌 ) |
| 10 |
1
|
a1i |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 = ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 11 |
|
ffun |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → Fun 𝐹 ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → Fun 𝐹 ) |
| 13 |
|
funimaexg |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐹 “ 𝑥 ) ∈ V ) |
| 14 |
13
|
ralrimiva |
⊢ ( Fun 𝐹 → ∀ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ∈ V ) |
| 15 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑥 ) ∈ V → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = 𝐵 ) |
| 16 |
12 14 15
|
3syl |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = 𝐵 ) |
| 17 |
|
fbasne0 |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → 𝐵 ≠ ∅ ) |
| 18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐵 ≠ ∅ ) |
| 19 |
16 18
|
eqnetrd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 20 |
|
dm0rn0 |
⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ∅ ↔ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ∅ ) |
| 21 |
20
|
necon3bii |
⊢ ( dom ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ↔ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 22 |
19 21
|
sylib |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 23 |
10 22
|
eqnetrd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ≠ ∅ ) |
| 24 |
|
fbelss |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ⊆ 𝑋 ) |
| 25 |
24
|
ex |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋 ) ) |
| 26 |
25
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝑋 ) ) |
| 27 |
|
0nelfb |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ¬ ∅ ∈ 𝐵 ) |
| 28 |
|
eleq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∈ 𝐵 ↔ ∅ ∈ 𝐵 ) ) |
| 29 |
28
|
notbid |
⊢ ( 𝑥 = ∅ → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ ∅ ∈ 𝐵 ) ) |
| 30 |
27 29
|
syl5ibrcom |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 = ∅ → ¬ 𝑥 ∈ 𝐵 ) ) |
| 31 |
30
|
con2d |
⊢ ( 𝐵 ∈ ( fBas ‘ 𝑋 ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅ ) ) |
| 32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ¬ 𝑥 = ∅ ) ) |
| 33 |
26 32
|
jcad |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) ) ) |
| 34 |
|
fdm |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → dom 𝐹 = 𝑋 ) |
| 35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → dom 𝐹 = 𝑋 ) |
| 36 |
35
|
sseq2d |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ⊆ dom 𝐹 ↔ 𝑥 ⊆ 𝑋 ) ) |
| 37 |
36
|
biimpar |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ⊆ dom 𝐹 ) |
| 38 |
|
sseqin2 |
⊢ ( 𝑥 ⊆ dom 𝐹 ↔ ( dom 𝐹 ∩ 𝑥 ) = 𝑥 ) |
| 39 |
37 38
|
sylib |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( dom 𝐹 ∩ 𝑥 ) = 𝑥 ) |
| 40 |
39
|
eqeq1d |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( dom 𝐹 ∩ 𝑥 ) = ∅ ↔ 𝑥 = ∅ ) ) |
| 41 |
40
|
biimpd |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ( dom 𝐹 ∩ 𝑥 ) = ∅ → 𝑥 = ∅ ) ) |
| 42 |
41
|
con3d |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ 𝑥 ⊆ 𝑋 ) → ( ¬ 𝑥 = ∅ → ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) ) |
| 43 |
42
|
expimpd |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) ) |
| 44 |
|
eqcom |
⊢ ( ∅ = ( 𝐹 “ 𝑥 ) ↔ ( 𝐹 “ 𝑥 ) = ∅ ) |
| 45 |
|
imadisj |
⊢ ( ( 𝐹 “ 𝑥 ) = ∅ ↔ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
| 46 |
44 45
|
bitri |
⊢ ( ∅ = ( 𝐹 “ 𝑥 ) ↔ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
| 47 |
46
|
notbii |
⊢ ( ¬ ∅ = ( 𝐹 “ 𝑥 ) ↔ ¬ ( dom 𝐹 ∩ 𝑥 ) = ∅ ) |
| 48 |
43 47
|
imbitrrdi |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑥 ⊆ 𝑋 ∧ ¬ 𝑥 = ∅ ) → ¬ ∅ = ( 𝐹 “ 𝑥 ) ) ) |
| 49 |
33 48
|
syld |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑥 ∈ 𝐵 → ¬ ∅ = ( 𝐹 “ 𝑥 ) ) ) |
| 50 |
49
|
ralrimiv |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ) |
| 51 |
1
|
eleq2i |
⊢ ( ∅ ∈ 𝐶 ↔ ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 52 |
|
0ex |
⊢ ∅ ∈ V |
| 53 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) |
| 54 |
53
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) ) |
| 55 |
52 54
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 56 |
51 55
|
bitri |
⊢ ( ∅ ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 57 |
56
|
notbii |
⊢ ( ¬ ∅ ∈ 𝐶 ↔ ¬ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 58 |
|
df-nel |
⊢ ( ∅ ∉ 𝐶 ↔ ¬ ∅ ∈ 𝐶 ) |
| 59 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ↔ ¬ ∃ 𝑥 ∈ 𝐵 ∅ = ( 𝐹 “ 𝑥 ) ) |
| 60 |
57 58 59
|
3bitr4i |
⊢ ( ∅ ∉ 𝐶 ↔ ∀ 𝑥 ∈ 𝐵 ¬ ∅ = ( 𝐹 “ 𝑥 ) ) |
| 61 |
50 60
|
sylibr |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∅ ∉ 𝐶 ) |
| 62 |
1
|
eleq2i |
⊢ ( 𝑟 ∈ 𝐶 ↔ 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 63 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑢 ) ) |
| 64 |
63
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( 𝐹 “ 𝑢 ) ) |
| 65 |
64
|
elrnmpt |
⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) ) |
| 66 |
65
|
elv |
⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) |
| 67 |
62 66
|
bitri |
⊢ ( 𝑟 ∈ 𝐶 ↔ ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ) |
| 68 |
1
|
eleq2i |
⊢ ( 𝑠 ∈ 𝐶 ↔ 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 69 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑣 ) ) |
| 70 |
69
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) = ( 𝑣 ∈ 𝐵 ↦ ( 𝐹 “ 𝑣 ) ) |
| 71 |
70
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 72 |
71
|
elv |
⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) |
| 73 |
68 72
|
bitri |
⊢ ( 𝑠 ∈ 𝐶 ↔ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) |
| 74 |
67 73
|
anbi12i |
⊢ ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) ↔ ( ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 75 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ↔ ( ∃ 𝑢 ∈ 𝐵 𝑟 = ( 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐵 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 76 |
74 75
|
bitr4i |
⊢ ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) ↔ ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) |
| 77 |
|
fbasssin |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 78 |
77
|
3expb |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 79 |
78
|
3ad2antl1 |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 80 |
79
|
adantrr |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑤 ∈ 𝐵 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) |
| 81 |
|
eqid |
⊢ ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑤 ) |
| 82 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑤 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑤 ) ) |
| 83 |
82
|
rspceeqv |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑤 ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
| 84 |
81 83
|
mpan2 |
⊢ ( 𝑤 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
| 85 |
84
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) |
| 86 |
1
|
eleq2i |
⊢ ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ) |
| 87 |
|
vex |
⊢ 𝑤 ∈ V |
| 88 |
87
|
funimaex |
⊢ ( Fun 𝐹 → ( 𝐹 “ 𝑤 ) ∈ V ) |
| 89 |
53
|
elrnmpt |
⊢ ( ( 𝐹 “ 𝑤 ) ∈ V → ( ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 90 |
12 88 89
|
3syl |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 “ 𝑤 ) ∈ ran ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 91 |
86 90
|
bitrid |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 92 |
91
|
ad2antrr |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝐹 “ 𝑤 ) = ( 𝐹 “ 𝑥 ) ) ) |
| 93 |
85 92
|
mpbird |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ∈ 𝐶 ) |
| 94 |
|
imass2 |
⊢ ( 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 95 |
94
|
ad2antll |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 96 |
|
inss1 |
⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 |
| 97 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑢 → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑢 ) ) |
| 98 |
96 97
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑢 ) |
| 99 |
|
inss2 |
⊢ ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 |
| 100 |
|
imass2 |
⊢ ( ( 𝑢 ∩ 𝑣 ) ⊆ 𝑣 → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑣 ) ) |
| 101 |
99 100
|
ax-mp |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝐹 “ 𝑣 ) |
| 102 |
98 101
|
ssini |
⊢ ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) |
| 103 |
|
ineq12 |
⊢ ( ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) ) |
| 104 |
103
|
ad2antlr |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( 𝐹 “ 𝑢 ) ∩ ( 𝐹 “ 𝑣 ) ) ) |
| 105 |
102 104
|
sseqtrrid |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 106 |
95 105
|
sstrd |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 107 |
|
sseq1 |
⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ↔ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 108 |
107
|
rspcev |
⊢ ( ( ( 𝐹 “ 𝑤 ) ∈ 𝐶 ∧ ( 𝐹 “ 𝑤 ) ⊆ ( 𝑟 ∩ 𝑠 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 109 |
93 106 108
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 110 |
109
|
adantlrl |
⊢ ( ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) ∧ ( 𝑤 ∈ 𝐵 ∧ 𝑤 ⊆ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 111 |
80 110
|
rexlimddv |
⊢ ( ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) ∧ ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 112 |
111
|
exp32 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑢 ∈ 𝐵 ∧ 𝑣 ∈ 𝐵 ) → ( ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) |
| 113 |
112
|
rexlimdvv |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ∃ 𝑢 ∈ 𝐵 ∃ 𝑣 ∈ 𝐵 ( 𝑟 = ( 𝐹 “ 𝑢 ) ∧ 𝑠 = ( 𝐹 “ 𝑣 ) ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 114 |
76 113
|
biimtrid |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑟 ∈ 𝐶 ∧ 𝑠 ∈ 𝐶 ) → ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 115 |
114
|
ralrimivv |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 116 |
23 61 115
|
3jca |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 117 |
|
isfbas2 |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 118 |
117
|
3ad2ant3 |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐶 ∈ ( fBas ‘ 𝑌 ) ↔ ( 𝐶 ⊆ 𝒫 𝑌 ∧ ( 𝐶 ≠ ∅ ∧ ∅ ∉ 𝐶 ∧ ∀ 𝑟 ∈ 𝐶 ∀ 𝑠 ∈ 𝐶 ∃ 𝑧 ∈ 𝐶 𝑧 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 119 |
9 116 118
|
mpbir2and |
⊢ ( ( 𝐵 ∈ ( fBas ‘ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ∧ 𝑌 ∈ 𝑉 ) → 𝐶 ∈ ( fBas ‘ 𝑌 ) ) |