| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fbasrn.c |
|- C = ran ( x e. B |-> ( F " x ) ) |
| 2 |
|
simpl3 |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> Y e. V ) |
| 3 |
|
simpl2 |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> F : X --> Y ) |
| 4 |
|
fimass |
|- ( F : X --> Y -> ( F " x ) C_ Y ) |
| 5 |
3 4
|
syl |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> ( F " x ) C_ Y ) |
| 6 |
2 5
|
sselpwd |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x e. B ) -> ( F " x ) e. ~P Y ) |
| 7 |
6
|
fmpttd |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B |-> ( F " x ) ) : B --> ~P Y ) |
| 8 |
7
|
frnd |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ran ( x e. B |-> ( F " x ) ) C_ ~P Y ) |
| 9 |
1 8
|
eqsstrid |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C C_ ~P Y ) |
| 10 |
1
|
a1i |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C = ran ( x e. B |-> ( F " x ) ) ) |
| 11 |
|
ffun |
|- ( F : X --> Y -> Fun F ) |
| 12 |
11
|
3ad2ant2 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> Fun F ) |
| 13 |
|
funimaexg |
|- ( ( Fun F /\ x e. B ) -> ( F " x ) e. _V ) |
| 14 |
13
|
ralrimiva |
|- ( Fun F -> A. x e. B ( F " x ) e. _V ) |
| 15 |
|
dmmptg |
|- ( A. x e. B ( F " x ) e. _V -> dom ( x e. B |-> ( F " x ) ) = B ) |
| 16 |
12 14 15
|
3syl |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom ( x e. B |-> ( F " x ) ) = B ) |
| 17 |
|
fbasne0 |
|- ( B e. ( fBas ` X ) -> B =/= (/) ) |
| 18 |
17
|
3ad2ant1 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> B =/= (/) ) |
| 19 |
16 18
|
eqnetrd |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom ( x e. B |-> ( F " x ) ) =/= (/) ) |
| 20 |
|
dm0rn0 |
|- ( dom ( x e. B |-> ( F " x ) ) = (/) <-> ran ( x e. B |-> ( F " x ) ) = (/) ) |
| 21 |
20
|
necon3bii |
|- ( dom ( x e. B |-> ( F " x ) ) =/= (/) <-> ran ( x e. B |-> ( F " x ) ) =/= (/) ) |
| 22 |
19 21
|
sylib |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ran ( x e. B |-> ( F " x ) ) =/= (/) ) |
| 23 |
10 22
|
eqnetrd |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C =/= (/) ) |
| 24 |
|
fbelss |
|- ( ( B e. ( fBas ` X ) /\ x e. B ) -> x C_ X ) |
| 25 |
24
|
ex |
|- ( B e. ( fBas ` X ) -> ( x e. B -> x C_ X ) ) |
| 26 |
25
|
3ad2ant1 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> x C_ X ) ) |
| 27 |
|
0nelfb |
|- ( B e. ( fBas ` X ) -> -. (/) e. B ) |
| 28 |
|
eleq1 |
|- ( x = (/) -> ( x e. B <-> (/) e. B ) ) |
| 29 |
28
|
notbid |
|- ( x = (/) -> ( -. x e. B <-> -. (/) e. B ) ) |
| 30 |
27 29
|
syl5ibrcom |
|- ( B e. ( fBas ` X ) -> ( x = (/) -> -. x e. B ) ) |
| 31 |
30
|
con2d |
|- ( B e. ( fBas ` X ) -> ( x e. B -> -. x = (/) ) ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> -. x = (/) ) ) |
| 33 |
26 32
|
jcad |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> ( x C_ X /\ -. x = (/) ) ) ) |
| 34 |
|
fdm |
|- ( F : X --> Y -> dom F = X ) |
| 35 |
34
|
3ad2ant2 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> dom F = X ) |
| 36 |
35
|
sseq2d |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x C_ dom F <-> x C_ X ) ) |
| 37 |
36
|
biimpar |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> x C_ dom F ) |
| 38 |
|
sseqin2 |
|- ( x C_ dom F <-> ( dom F i^i x ) = x ) |
| 39 |
37 38
|
sylib |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( dom F i^i x ) = x ) |
| 40 |
39
|
eqeq1d |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( ( dom F i^i x ) = (/) <-> x = (/) ) ) |
| 41 |
40
|
biimpd |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( ( dom F i^i x ) = (/) -> x = (/) ) ) |
| 42 |
41
|
con3d |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ x C_ X ) -> ( -. x = (/) -> -. ( dom F i^i x ) = (/) ) ) |
| 43 |
42
|
expimpd |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( x C_ X /\ -. x = (/) ) -> -. ( dom F i^i x ) = (/) ) ) |
| 44 |
|
eqcom |
|- ( (/) = ( F " x ) <-> ( F " x ) = (/) ) |
| 45 |
|
imadisj |
|- ( ( F " x ) = (/) <-> ( dom F i^i x ) = (/) ) |
| 46 |
44 45
|
bitri |
|- ( (/) = ( F " x ) <-> ( dom F i^i x ) = (/) ) |
| 47 |
46
|
notbii |
|- ( -. (/) = ( F " x ) <-> -. ( dom F i^i x ) = (/) ) |
| 48 |
43 47
|
imbitrrdi |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( x C_ X /\ -. x = (/) ) -> -. (/) = ( F " x ) ) ) |
| 49 |
33 48
|
syld |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( x e. B -> -. (/) = ( F " x ) ) ) |
| 50 |
49
|
ralrimiv |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> A. x e. B -. (/) = ( F " x ) ) |
| 51 |
1
|
eleq2i |
|- ( (/) e. C <-> (/) e. ran ( x e. B |-> ( F " x ) ) ) |
| 52 |
|
0ex |
|- (/) e. _V |
| 53 |
|
eqid |
|- ( x e. B |-> ( F " x ) ) = ( x e. B |-> ( F " x ) ) |
| 54 |
53
|
elrnmpt |
|- ( (/) e. _V -> ( (/) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B (/) = ( F " x ) ) ) |
| 55 |
52 54
|
ax-mp |
|- ( (/) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B (/) = ( F " x ) ) |
| 56 |
51 55
|
bitri |
|- ( (/) e. C <-> E. x e. B (/) = ( F " x ) ) |
| 57 |
56
|
notbii |
|- ( -. (/) e. C <-> -. E. x e. B (/) = ( F " x ) ) |
| 58 |
|
df-nel |
|- ( (/) e/ C <-> -. (/) e. C ) |
| 59 |
|
ralnex |
|- ( A. x e. B -. (/) = ( F " x ) <-> -. E. x e. B (/) = ( F " x ) ) |
| 60 |
57 58 59
|
3bitr4i |
|- ( (/) e/ C <-> A. x e. B -. (/) = ( F " x ) ) |
| 61 |
50 60
|
sylibr |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> (/) e/ C ) |
| 62 |
1
|
eleq2i |
|- ( r e. C <-> r e. ran ( x e. B |-> ( F " x ) ) ) |
| 63 |
|
imaeq2 |
|- ( x = u -> ( F " x ) = ( F " u ) ) |
| 64 |
63
|
cbvmptv |
|- ( x e. B |-> ( F " x ) ) = ( u e. B |-> ( F " u ) ) |
| 65 |
64
|
elrnmpt |
|- ( r e. _V -> ( r e. ran ( x e. B |-> ( F " x ) ) <-> E. u e. B r = ( F " u ) ) ) |
| 66 |
65
|
elv |
|- ( r e. ran ( x e. B |-> ( F " x ) ) <-> E. u e. B r = ( F " u ) ) |
| 67 |
62 66
|
bitri |
|- ( r e. C <-> E. u e. B r = ( F " u ) ) |
| 68 |
1
|
eleq2i |
|- ( s e. C <-> s e. ran ( x e. B |-> ( F " x ) ) ) |
| 69 |
|
imaeq2 |
|- ( x = v -> ( F " x ) = ( F " v ) ) |
| 70 |
69
|
cbvmptv |
|- ( x e. B |-> ( F " x ) ) = ( v e. B |-> ( F " v ) ) |
| 71 |
70
|
elrnmpt |
|- ( s e. _V -> ( s e. ran ( x e. B |-> ( F " x ) ) <-> E. v e. B s = ( F " v ) ) ) |
| 72 |
71
|
elv |
|- ( s e. ran ( x e. B |-> ( F " x ) ) <-> E. v e. B s = ( F " v ) ) |
| 73 |
68 72
|
bitri |
|- ( s e. C <-> E. v e. B s = ( F " v ) ) |
| 74 |
67 73
|
anbi12i |
|- ( ( r e. C /\ s e. C ) <-> ( E. u e. B r = ( F " u ) /\ E. v e. B s = ( F " v ) ) ) |
| 75 |
|
reeanv |
|- ( E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) <-> ( E. u e. B r = ( F " u ) /\ E. v e. B s = ( F " v ) ) ) |
| 76 |
74 75
|
bitr4i |
|- ( ( r e. C /\ s e. C ) <-> E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) ) |
| 77 |
|
fbasssin |
|- ( ( B e. ( fBas ` X ) /\ u e. B /\ v e. B ) -> E. w e. B w C_ ( u i^i v ) ) |
| 78 |
77
|
3expb |
|- ( ( B e. ( fBas ` X ) /\ ( u e. B /\ v e. B ) ) -> E. w e. B w C_ ( u i^i v ) ) |
| 79 |
78
|
3ad2antl1 |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( u e. B /\ v e. B ) ) -> E. w e. B w C_ ( u i^i v ) ) |
| 80 |
79
|
adantrr |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) -> E. w e. B w C_ ( u i^i v ) ) |
| 81 |
|
eqid |
|- ( F " w ) = ( F " w ) |
| 82 |
|
imaeq2 |
|- ( x = w -> ( F " x ) = ( F " w ) ) |
| 83 |
82
|
rspceeqv |
|- ( ( w e. B /\ ( F " w ) = ( F " w ) ) -> E. x e. B ( F " w ) = ( F " x ) ) |
| 84 |
81 83
|
mpan2 |
|- ( w e. B -> E. x e. B ( F " w ) = ( F " x ) ) |
| 85 |
84
|
ad2antrl |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. x e. B ( F " w ) = ( F " x ) ) |
| 86 |
1
|
eleq2i |
|- ( ( F " w ) e. C <-> ( F " w ) e. ran ( x e. B |-> ( F " x ) ) ) |
| 87 |
|
vex |
|- w e. _V |
| 88 |
87
|
funimaex |
|- ( Fun F -> ( F " w ) e. _V ) |
| 89 |
53
|
elrnmpt |
|- ( ( F " w ) e. _V -> ( ( F " w ) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 90 |
12 88 89
|
3syl |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( F " w ) e. ran ( x e. B |-> ( F " x ) ) <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 91 |
86 90
|
bitrid |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( F " w ) e. C <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( ( F " w ) e. C <-> E. x e. B ( F " w ) = ( F " x ) ) ) |
| 93 |
85 92
|
mpbird |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) e. C ) |
| 94 |
|
imass2 |
|- ( w C_ ( u i^i v ) -> ( F " w ) C_ ( F " ( u i^i v ) ) ) |
| 95 |
94
|
ad2antll |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) C_ ( F " ( u i^i v ) ) ) |
| 96 |
|
inss1 |
|- ( u i^i v ) C_ u |
| 97 |
|
imass2 |
|- ( ( u i^i v ) C_ u -> ( F " ( u i^i v ) ) C_ ( F " u ) ) |
| 98 |
96 97
|
ax-mp |
|- ( F " ( u i^i v ) ) C_ ( F " u ) |
| 99 |
|
inss2 |
|- ( u i^i v ) C_ v |
| 100 |
|
imass2 |
|- ( ( u i^i v ) C_ v -> ( F " ( u i^i v ) ) C_ ( F " v ) ) |
| 101 |
99 100
|
ax-mp |
|- ( F " ( u i^i v ) ) C_ ( F " v ) |
| 102 |
98 101
|
ssini |
|- ( F " ( u i^i v ) ) C_ ( ( F " u ) i^i ( F " v ) ) |
| 103 |
|
ineq12 |
|- ( ( r = ( F " u ) /\ s = ( F " v ) ) -> ( r i^i s ) = ( ( F " u ) i^i ( F " v ) ) ) |
| 104 |
103
|
ad2antlr |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( r i^i s ) = ( ( F " u ) i^i ( F " v ) ) ) |
| 105 |
102 104
|
sseqtrrid |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " ( u i^i v ) ) C_ ( r i^i s ) ) |
| 106 |
95 105
|
sstrd |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> ( F " w ) C_ ( r i^i s ) ) |
| 107 |
|
sseq1 |
|- ( z = ( F " w ) -> ( z C_ ( r i^i s ) <-> ( F " w ) C_ ( r i^i s ) ) ) |
| 108 |
107
|
rspcev |
|- ( ( ( F " w ) e. C /\ ( F " w ) C_ ( r i^i s ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 109 |
93 106 108
|
syl2anc |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 110 |
109
|
adantlrl |
|- ( ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) /\ ( w e. B /\ w C_ ( u i^i v ) ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 111 |
80 110
|
rexlimddv |
|- ( ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) /\ ( ( u e. B /\ v e. B ) /\ ( r = ( F " u ) /\ s = ( F " v ) ) ) ) -> E. z e. C z C_ ( r i^i s ) ) |
| 112 |
111
|
exp32 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( u e. B /\ v e. B ) -> ( ( r = ( F " u ) /\ s = ( F " v ) ) -> E. z e. C z C_ ( r i^i s ) ) ) ) |
| 113 |
112
|
rexlimdvv |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( E. u e. B E. v e. B ( r = ( F " u ) /\ s = ( F " v ) ) -> E. z e. C z C_ ( r i^i s ) ) ) |
| 114 |
76 113
|
biimtrid |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( ( r e. C /\ s e. C ) -> E. z e. C z C_ ( r i^i s ) ) ) |
| 115 |
114
|
ralrimivv |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) |
| 116 |
23 61 115
|
3jca |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) |
| 117 |
|
isfbas2 |
|- ( Y e. V -> ( C e. ( fBas ` Y ) <-> ( C C_ ~P Y /\ ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) ) ) |
| 118 |
117
|
3ad2ant3 |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> ( C e. ( fBas ` Y ) <-> ( C C_ ~P Y /\ ( C =/= (/) /\ (/) e/ C /\ A. r e. C A. s e. C E. z e. C z C_ ( r i^i s ) ) ) ) ) |
| 119 |
9 116 118
|
mpbir2and |
|- ( ( B e. ( fBas ` X ) /\ F : X --> Y /\ Y e. V ) -> C e. ( fBas ` Y ) ) |