| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierlemiblglemlem.p |
⊢ 𝑃 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐴 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐵 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 2 |
|
fourierdlem100.t |
⊢ 𝑇 = ( 𝐵 − 𝐴 ) |
| 3 |
|
fourierdlem100.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 4 |
|
fourierdlem100.q |
⊢ ( 𝜑 → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 5 |
|
fourierdlem100.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℂ ) |
| 6 |
|
fourierdlem100.per |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 7 |
|
fourierdlem100.fcn |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 8 |
|
fourierdlem100.r |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 9 |
|
fourierdlem100.l |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 10 |
|
fourierdlem100.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 |
|
fourierdlem100.d |
⊢ ( 𝜑 → 𝐷 ∈ ( 𝐶 (,) +∞ ) ) |
| 12 |
|
fourierdlem100.o |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) |
| 13 |
|
fourierdlem100.n |
⊢ 𝑁 = ( ( ♯ ‘ 𝐻 ) − 1 ) |
| 14 |
|
fourierdlem100.h |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 15 |
|
fourierdlem100.s |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) |
| 16 |
|
fourierdlem100.e |
⊢ 𝐸 = ( 𝑥 ∈ ℝ ↦ ( 𝑥 + ( ( ⌊ ‘ ( ( 𝐵 − 𝑥 ) / 𝑇 ) ) · 𝑇 ) ) ) |
| 17 |
|
fourierdlem100.j |
⊢ 𝐽 = ( 𝑦 ∈ ( 𝐴 (,] 𝐵 ) ↦ if ( 𝑦 = 𝐵 , 𝐴 , 𝑦 ) ) |
| 18 |
|
fourierdlem100.i |
⊢ 𝐼 = ( 𝑥 ∈ ℝ ↦ sup ( { 𝑖 ∈ ( 0 ..^ 𝑀 ) ∣ ( 𝑄 ‘ 𝑖 ) ≤ ( 𝐽 ‘ ( 𝐸 ‘ 𝑥 ) ) } , ℝ , < ) ) |
| 19 |
|
elioore |
⊢ ( 𝐷 ∈ ( 𝐶 (,) +∞ ) → 𝐷 ∈ ℝ ) |
| 20 |
11 19
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 21 |
10 20
|
iccssred |
⊢ ( 𝜑 → ( 𝐶 [,] 𝐷 ) ⊆ ℝ ) |
| 22 |
5 21
|
feqresmpt |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) = ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ 𝑖 ) = ( 𝑝 ‘ 𝑗 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑖 = 𝑗 → ( 𝑖 + 1 ) = ( 𝑗 + 1 ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 𝑝 ‘ ( 𝑖 + 1 ) ) = ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
| 26 |
23 25
|
breq12d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
| 27 |
26
|
cbvralvw |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ↔ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) |
| 28 |
27
|
anbi2i |
⊢ ( ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) |
| 29 |
28
|
a1i |
⊢ ( 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) → ( ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) ↔ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 30 |
29
|
rabbiia |
⊢ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } = { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } |
| 31 |
30
|
mpteq2i |
⊢ ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑖 ) < ( 𝑝 ‘ ( 𝑖 + 1 ) ) ) } ) = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
| 32 |
12 31
|
eqtri |
⊢ 𝑂 = ( 𝑚 ∈ ℕ ↦ { 𝑝 ∈ ( ℝ ↑m ( 0 ... 𝑚 ) ) ∣ ( ( ( 𝑝 ‘ 0 ) = 𝐶 ∧ ( 𝑝 ‘ 𝑚 ) = 𝐷 ) ∧ ∀ 𝑗 ∈ ( 0 ..^ 𝑚 ) ( 𝑝 ‘ 𝑗 ) < ( 𝑝 ‘ ( 𝑗 + 1 ) ) ) } ) |
| 33 |
|
elioo4g |
⊢ ( 𝐷 ∈ ( 𝐶 (,) +∞ ) ↔ ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐶 < 𝐷 ∧ 𝐷 < +∞ ) ) ) |
| 34 |
11 33
|
sylib |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐷 ∈ ℝ ) ∧ ( 𝐶 < 𝐷 ∧ 𝐷 < +∞ ) ) ) |
| 35 |
34
|
simprd |
⊢ ( 𝜑 → ( 𝐶 < 𝐷 ∧ 𝐷 < +∞ ) ) |
| 36 |
35
|
simpld |
⊢ ( 𝜑 → 𝐶 < 𝐷 ) |
| 37 |
|
id |
⊢ ( 𝑦 = 𝑥 → 𝑦 = 𝑥 ) |
| 38 |
2
|
eqcomi |
⊢ ( 𝐵 − 𝐴 ) = 𝑇 |
| 39 |
38
|
oveq2i |
⊢ ( 𝑘 · ( 𝐵 − 𝐴 ) ) = ( 𝑘 · 𝑇 ) |
| 40 |
39
|
a1i |
⊢ ( 𝑦 = 𝑥 → ( 𝑘 · ( 𝐵 − 𝐴 ) ) = ( 𝑘 · 𝑇 ) ) |
| 41 |
37 40
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) = ( 𝑥 + ( 𝑘 · 𝑇 ) ) ) |
| 42 |
41
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 43 |
42
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ) ) |
| 44 |
43
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } = { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } |
| 45 |
44
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑥 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) |
| 46 |
39
|
eqcomi |
⊢ ( 𝑘 · 𝑇 ) = ( 𝑘 · ( 𝐵 − 𝐴 ) ) |
| 47 |
46
|
oveq2i |
⊢ ( 𝑦 + ( 𝑘 · 𝑇 ) ) = ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) |
| 48 |
47
|
eleq1i |
⊢ ( ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 49 |
48
|
rexbii |
⊢ ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 50 |
49
|
rgenw |
⊢ ∀ 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) |
| 51 |
|
rabbi |
⊢ ( ∀ 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ( ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 ↔ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 ) ↔ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
| 52 |
50 51
|
mpbi |
⊢ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } = { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } |
| 53 |
52
|
uneq2i |
⊢ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · 𝑇 ) ) ∈ ran 𝑄 } ) = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
| 54 |
14 53
|
eqtri |
⊢ 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) |
| 55 |
54
|
fveq2i |
⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) |
| 56 |
55
|
oveq1i |
⊢ ( ( ♯ ‘ 𝐻 ) − 1 ) = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 57 |
13 56
|
eqtri |
⊢ 𝑁 = ( ( ♯ ‘ ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) − 1 ) |
| 58 |
|
isoeq5 |
⊢ ( 𝐻 = ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) → ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) ) |
| 59 |
54 58
|
ax-mp |
⊢ ( 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ↔ 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 60 |
59
|
iotabii |
⊢ ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , 𝐻 ) ) = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 61 |
15 60
|
eqtri |
⊢ 𝑆 = ( ℩ 𝑓 𝑓 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) |
| 62 |
2 1 3 4 10 20 36 12 45 57 61
|
fourierdlem54 |
⊢ ( 𝜑 → ( ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ∧ 𝑆 Isom < , < ( ( 0 ... 𝑁 ) , ( { 𝐶 , 𝐷 } ∪ { 𝑦 ∈ ( 𝐶 [,] 𝐷 ) ∣ ∃ 𝑘 ∈ ℤ ( 𝑦 + ( 𝑘 · ( 𝐵 − 𝐴 ) ) ) ∈ ran 𝑄 } ) ) ) ) |
| 63 |
62
|
simpld |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ ∧ 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) ) |
| 64 |
63
|
simpld |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 65 |
63
|
simprd |
⊢ ( 𝜑 → 𝑆 ∈ ( 𝑂 ‘ 𝑁 ) ) |
| 66 |
5 21
|
fssresd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) : ( 𝐶 [,] 𝐷 ) ⟶ ℂ ) |
| 67 |
|
ioossicc |
⊢ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) |
| 68 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ∈ ℝ ) |
| 69 |
68
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐶 ∈ ℝ* ) |
| 70 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 ∈ ( 𝐶 (,) +∞ ) ) |
| 71 |
70 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 ∈ ℝ ) |
| 72 |
71
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐷 ∈ ℝ* ) |
| 73 |
12 64 65
|
fourierdlem15 |
⊢ ( 𝜑 → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑆 : ( 0 ... 𝑁 ) ⟶ ( 𝐶 [,] 𝐷 ) ) |
| 75 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑗 ∈ ( 0 ..^ 𝑁 ) ) |
| 76 |
69 72 74 75
|
fourierdlem8 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) [,] ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 77 |
67 76
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ⊆ ( 𝐶 [,] 𝐷 ) ) |
| 78 |
77
|
resabs1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 79 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑀 ∈ ℕ ) |
| 80 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝑄 ∈ ( 𝑃 ‘ 𝑀 ) ) |
| 81 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → 𝐹 : ℝ ⟶ ℂ ) |
| 82 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ ( 𝑥 + 𝑇 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 83 |
7
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) ∈ ( ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) –cn→ ℂ ) ) |
| 84 |
|
eqid |
⊢ ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 85 |
|
eqid |
⊢ ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) = ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 86 |
|
eqid |
⊢ ( 𝑦 ∈ ( ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ ( 𝑦 − ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) = ( 𝑦 ∈ ( ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) (,) ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) + ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ↦ ( ( 𝐹 ↾ ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) (,) ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ‘ ( 𝑦 − ( ( 𝑆 ‘ ( 𝑗 + 1 ) ) − ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ) ) |
| 87 |
1 2 79 80 81 82 83 68 70 12 14 13 15 16 17 75 84 85 86 18
|
fourierdlem90 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
| 88 |
78 87
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ∈ ( ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) –cn→ ℂ ) ) |
| 89 |
8
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝑅 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ 𝑖 ) ) ) |
| 90 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) |
| 91 |
1 2 79 80 81 82 83 89 68 70 12 14 13 15 16 17 75 84 18 90
|
fourierdlem89 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) ) |
| 92 |
78
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) = ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) |
| 93 |
92
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) = ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) ) |
| 94 |
91 93
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) = ( 𝑄 ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝑅 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐽 ‘ ( 𝐸 ‘ ( 𝑆 ‘ 𝑗 ) ) ) ) ) ∈ ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ 𝑗 ) ) ) |
| 95 |
9
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑀 ) ) → 𝐿 ∈ ( ( 𝐹 ↾ ( ( 𝑄 ‘ 𝑖 ) (,) ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) limℂ ( 𝑄 ‘ ( 𝑖 + 1 ) ) ) ) |
| 96 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) = ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) |
| 97 |
1 2 79 80 81 82 83 95 68 70 12 14 13 15 16 17 75 84 18 96
|
fourierdlem91 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 98 |
92
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 99 |
97 98
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑁 ) ) → if ( ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) = ( 𝑄 ‘ ( ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) + 1 ) ) , ( ( 𝑖 ∈ ( 0 ..^ 𝑀 ) ↦ 𝐿 ) ‘ ( 𝐼 ‘ ( 𝑆 ‘ 𝑗 ) ) ) , ( 𝐹 ‘ ( 𝐸 ‘ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) ) ∈ ( ( ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ↾ ( ( 𝑆 ‘ 𝑗 ) (,) ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) limℂ ( 𝑆 ‘ ( 𝑗 + 1 ) ) ) ) |
| 100 |
32 64 65 66 88 94 99
|
fourierdlem69 |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐶 [,] 𝐷 ) ) ∈ 𝐿1 ) |
| 101 |
22 100
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐶 [,] 𝐷 ) ↦ ( 𝐹 ‘ 𝑥 ) ) ∈ 𝐿1 ) |