| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpkerinj.1 |
⊢ 𝑋 = ran 𝐺 |
| 2 |
|
grpkerinj.2 |
⊢ 𝑊 = ( GId ‘ 𝐺 ) |
| 3 |
|
grpkerinj.3 |
⊢ 𝑌 = ran 𝐻 |
| 4 |
|
grpkerinj.4 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
| 5 |
2 4
|
ghomidOLD |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 ‘ 𝑊 ) = 𝑈 ) |
| 6 |
5
|
sneqd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { ( 𝐹 ‘ 𝑊 ) } = { 𝑈 } ) |
| 7 |
1 3
|
ghomf |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 8 |
7
|
ffnd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝐹 Fn 𝑋 ) |
| 9 |
1 2
|
grpoidcl |
⊢ ( 𝐺 ∈ GrpOp → 𝑊 ∈ 𝑋 ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → 𝑊 ∈ 𝑋 ) |
| 11 |
|
fnsnfv |
⊢ ( ( 𝐹 Fn 𝑋 ∧ 𝑊 ∈ 𝑋 ) → { ( 𝐹 ‘ 𝑊 ) } = ( 𝐹 “ { 𝑊 } ) ) |
| 12 |
8 10 11
|
syl2anc |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { ( 𝐹 ‘ 𝑊 ) } = ( 𝐹 “ { 𝑊 } ) ) |
| 13 |
6 12
|
eqtr3d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { 𝑈 } = ( 𝐹 “ { 𝑊 } ) ) |
| 14 |
13
|
imaeq2d |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ◡ 𝐹 “ { 𝑈 } ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ) → ( ◡ 𝐹 “ { 𝑈 } ) = ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) ) |
| 16 |
9
|
snssd |
⊢ ( 𝐺 ∈ GrpOp → { 𝑊 } ⊆ 𝑋 ) |
| 17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → { 𝑊 } ⊆ 𝑋 ) |
| 18 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ { 𝑊 } ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) = { 𝑊 } ) |
| 19 |
17 18
|
sylan2 |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ) → ( ◡ 𝐹 “ ( 𝐹 “ { 𝑊 } ) ) = { 𝑊 } ) |
| 20 |
15 19
|
eqtrd |
⊢ ( ( 𝐹 : 𝑋 –1-1→ 𝑌 ∧ ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ) → ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) |
| 21 |
20
|
expcom |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 : 𝑋 –1-1→ 𝑌 → ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ) |
| 22 |
7
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 23 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝐻 ∈ GrpOp ) |
| 24 |
7
|
ffvelcdmda |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
| 25 |
24
|
adantrr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ) |
| 26 |
7
|
ffvelcdmda |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 27 |
26
|
adantrl |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) |
| 28 |
|
eqid |
⊢ ( /𝑔 ‘ 𝐻 ) = ( /𝑔 ‘ 𝐻 ) |
| 29 |
3 4 28
|
grpoeqdivid |
⊢ ( ( 𝐻 ∈ GrpOp ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑦 ) ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 30 |
23 25 27 29
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 32 |
|
eqid |
⊢ ( /𝑔 ‘ 𝐺 ) = ( /𝑔 ‘ 𝐺 ) |
| 33 |
1 32 28
|
ghomdiv |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 35 |
34
|
eqeq1d |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 ↔ ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 ) ) |
| 36 |
4
|
fvexi |
⊢ 𝑈 ∈ V |
| 37 |
36
|
snid |
⊢ 𝑈 ∈ { 𝑈 } |
| 38 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ 𝑈 ∈ { 𝑈 } ) ) |
| 39 |
37 38
|
mpbiri |
⊢ ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 → ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ) |
| 40 |
7
|
ffund |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → Fun 𝐹 ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → Fun 𝐹 ) |
| 42 |
1 32
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 43 |
42
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 44 |
43
|
3ad2antl1 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ 𝑋 ) |
| 45 |
7
|
fdmd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → dom 𝐹 = 𝑋 ) |
| 46 |
45
|
adantr |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → dom 𝐹 = 𝑋 ) |
| 47 |
44 46
|
eleqtrrd |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ dom 𝐹 ) |
| 48 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ dom 𝐹 ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 𝑈 } ) ) ) |
| 49 |
41 47 48
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 𝑈 } ) ) ) |
| 50 |
|
eleq2 |
⊢ ( ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ ( ◡ 𝐹 “ { 𝑈 } ) ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } ) ) |
| 51 |
49 50
|
sylan9bb |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } ) ) |
| 52 |
51
|
an32s |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } ) ) |
| 53 |
|
elsni |
⊢ ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } → ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 ) |
| 54 |
1 2 32
|
grpoeqdivid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = 𝑦 ↔ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 ) ) |
| 55 |
54
|
biimprd |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 → 𝑥 = 𝑦 ) ) |
| 56 |
55
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 → 𝑥 = 𝑦 ) ) |
| 57 |
56
|
3ad2antl1 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) = 𝑊 → 𝑥 = 𝑦 ) ) |
| 58 |
53 57
|
syl5 |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } → 𝑥 = 𝑦 ) ) |
| 59 |
58
|
adantlr |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ∈ { 𝑊 } → 𝑥 = 𝑦 ) ) |
| 60 |
52 59
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) ∈ { 𝑈 } → 𝑥 = 𝑦 ) ) |
| 61 |
39 60
|
syl5 |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ ( 𝑥 ( /𝑔 ‘ 𝐺 ) 𝑦 ) ) = 𝑈 → 𝑥 = 𝑦 ) ) |
| 62 |
35 61
|
sylbird |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) ( /𝑔 ‘ 𝐻 ) ( 𝐹 ‘ 𝑦 ) ) = 𝑈 → 𝑥 = 𝑦 ) ) |
| 63 |
31 62
|
sylbid |
⊢ ( ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 64 |
63
|
ralrimivva |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 65 |
|
dff13 |
⊢ ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 66 |
22 64 65
|
sylanbrc |
⊢ ( ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) ∧ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) → 𝐹 : 𝑋 –1-1→ 𝑌 ) |
| 67 |
66
|
ex |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } → 𝐹 : 𝑋 –1-1→ 𝑌 ) ) |
| 68 |
21 67
|
impbid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ ( 𝐺 GrpOpHom 𝐻 ) ) → ( 𝐹 : 𝑋 –1-1→ 𝑌 ↔ ( ◡ 𝐹 “ { 𝑈 } ) = { 𝑊 } ) ) |