Metamath Proof Explorer


Theorem imasval

Description: Value of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasval.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
imasval.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
imasval.p + = ( +g𝑅 )
imasval.m × = ( .r𝑅 )
imasval.g 𝐺 = ( Scalar ‘ 𝑅 )
imasval.k 𝐾 = ( Base ‘ 𝐺 )
imasval.q · = ( ·𝑠𝑅 )
imasval.i , = ( ·𝑖𝑅 )
imasval.j 𝐽 = ( TopOpen ‘ 𝑅 )
imasval.e 𝐸 = ( dist ‘ 𝑅 )
imasval.n 𝑁 = ( le ‘ 𝑅 )
imasval.a ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ } )
imasval.t ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ } )
imasval.s ( 𝜑 = 𝑞𝑉 ( 𝑝𝐾 , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
imasval.w ( 𝜑𝐼 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ } )
imasval.o ( 𝜑𝑂 = ( 𝐽 qTop 𝐹 ) )
imasval.d ( 𝜑𝐷 = ( 𝑥𝐵 , 𝑦𝐵 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < ) ) )
imasval.l ( 𝜑 = ( ( 𝐹𝑁 ) ∘ 𝐹 ) )
imasval.f ( 𝜑𝐹 : 𝑉onto𝐵 )
imasval.r ( 𝜑𝑅𝑍 )
Assertion imasval ( 𝜑𝑈 = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) )

Proof

Step Hyp Ref Expression
1 imasval.u ( 𝜑𝑈 = ( 𝐹s 𝑅 ) )
2 imasval.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 imasval.p + = ( +g𝑅 )
4 imasval.m × = ( .r𝑅 )
5 imasval.g 𝐺 = ( Scalar ‘ 𝑅 )
6 imasval.k 𝐾 = ( Base ‘ 𝐺 )
7 imasval.q · = ( ·𝑠𝑅 )
8 imasval.i , = ( ·𝑖𝑅 )
9 imasval.j 𝐽 = ( TopOpen ‘ 𝑅 )
10 imasval.e 𝐸 = ( dist ‘ 𝑅 )
11 imasval.n 𝑁 = ( le ‘ 𝑅 )
12 imasval.a ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ } )
13 imasval.t ( 𝜑 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ } )
14 imasval.s ( 𝜑 = 𝑞𝑉 ( 𝑝𝐾 , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
15 imasval.w ( 𝜑𝐼 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ } )
16 imasval.o ( 𝜑𝑂 = ( 𝐽 qTop 𝐹 ) )
17 imasval.d ( 𝜑𝐷 = ( 𝑥𝐵 , 𝑦𝐵 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < ) ) )
18 imasval.l ( 𝜑 = ( ( 𝐹𝑁 ) ∘ 𝐹 ) )
19 imasval.f ( 𝜑𝐹 : 𝑉onto𝐵 )
20 imasval.r ( 𝜑𝑅𝑍 )
21 df-imas s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) )
22 21 a1i ( 𝜑 → “s = ( 𝑓 ∈ V , 𝑟 ∈ V ↦ ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) ) )
23 fvexd ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) → ( Base ‘ 𝑟 ) ∈ V )
24 simplrl ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑓 = 𝐹 )
25 24 rneqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝑓 = ran 𝐹 )
26 forn ( 𝐹 : 𝑉onto𝐵 → ran 𝐹 = 𝐵 )
27 19 26 syl ( 𝜑 → ran 𝐹 = 𝐵 )
28 27 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝐹 = 𝐵 )
29 25 28 eqtrd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran 𝑓 = 𝐵 )
30 29 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ = ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ )
31 simplrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑟 = 𝑅 )
32 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) )
33 simpr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = ( Base ‘ 𝑟 ) )
34 2 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑉 = ( Base ‘ 𝑅 ) )
35 32 33 34 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = 𝑉 )
36 24 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓𝑝 ) = ( 𝐹𝑝 ) )
37 24 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓𝑞 ) = ( 𝐹𝑞 ) )
38 36 37 opeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ = ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ )
39 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( +g𝑟 ) = ( +g𝑅 ) )
40 39 3 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( +g𝑟 ) = + )
41 40 oveqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( +g𝑟 ) 𝑞 ) = ( 𝑝 + 𝑞 ) )
42 24 41 fveq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) )
43 38 42 opeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ = ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ )
44 43 sneqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } = { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ } )
45 35 44 iuneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } = 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ } )
46 35 45 iuneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ } )
47 12 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 + 𝑞 ) ) ⟩ } )
48 46 47 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } = )
49 48 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ = ⟨ ( +g ‘ ndx ) , ⟩ )
50 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( .r𝑟 ) = ( .r𝑅 ) )
51 50 4 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( .r𝑟 ) = × )
52 51 oveqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( .r𝑟 ) 𝑞 ) = ( 𝑝 × 𝑞 ) )
53 24 52 fveq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) )
54 38 53 opeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ = ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ )
55 54 sneqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } = { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ } )
56 35 55 iuneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } = 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ } )
57 35 56 iuneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ } )
58 13 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝐹 ‘ ( 𝑝 × 𝑞 ) ) ⟩ } )
59 57 58 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } = )
60 59 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ = ⟨ ( .r ‘ ndx ) , ⟩ )
61 30 49 60 tpeq123d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } )
62 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Scalar ‘ 𝑟 ) = ( Scalar ‘ 𝑅 ) )
63 62 5 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Scalar ‘ 𝑟 ) = 𝐺 )
64 63 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ = ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ )
65 63 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = ( Base ‘ 𝐺 ) )
66 65 6 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ ( Scalar ‘ 𝑟 ) ) = 𝐾 )
67 37 sneqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ( 𝑓𝑞 ) } = { ( 𝐹𝑞 ) } )
68 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑠𝑟 ) = ( ·𝑠𝑅 ) )
69 68 7 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑠𝑟 ) = · )
70 69 oveqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) = ( 𝑝 · 𝑞 ) )
71 24 70 fveq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) = ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) )
72 66 67 71 mpoeq123dv ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) = ( 𝑝𝐾 , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
73 72 iuneq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) = 𝑞𝑉 ( 𝑝𝐾 , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
74 35 iuneq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) = 𝑞𝑉 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) )
75 14 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → = 𝑞𝑉 ( 𝑝𝐾 , 𝑥 ∈ { ( 𝐹𝑞 ) } ↦ ( 𝐹 ‘ ( 𝑝 · 𝑞 ) ) ) )
76 73 74 75 3eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) = )
77 76 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ = ⟨ ( ·𝑠 ‘ ndx ) , ⟩ )
78 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑖𝑟 ) = ( ·𝑖𝑅 ) )
79 78 8 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ·𝑖𝑟 ) = , )
80 79 oveqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) = ( 𝑝 , 𝑞 ) )
81 38 80 opeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ = ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ )
82 81 sneqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } = { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ } )
83 35 82 iuneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } = 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ } )
84 35 83 iuneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ } )
85 15 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝐼 = 𝑝𝑉 𝑞𝑉 { ⟨ ⟨ ( 𝐹𝑝 ) , ( 𝐹𝑞 ) ⟩ , ( 𝑝 , 𝑞 ) ⟩ } )
86 84 85 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } = 𝐼 )
87 86 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ = ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ )
88 64 77 87 tpeq123d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } = { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } )
89 61 88 uneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) = ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) )
90 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( TopOpen ‘ 𝑟 ) = ( TopOpen ‘ 𝑅 ) )
91 90 9 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( TopOpen ‘ 𝑟 ) = 𝐽 )
92 91 24 oveq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) = ( 𝐽 qTop 𝐹 ) )
93 16 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑂 = ( 𝐽 qTop 𝐹 ) )
94 92 93 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) = 𝑂 )
95 94 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ = ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ )
96 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) )
97 96 11 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = 𝑁 )
98 24 97 coeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ∘ ( le ‘ 𝑟 ) ) = ( 𝐹𝑁 ) )
99 24 cnveqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑓 = 𝐹 )
100 98 99 coeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) = ( ( 𝐹𝑁 ) ∘ 𝐹 ) )
101 18 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → = ( ( 𝐹𝑁 ) ∘ 𝐹 ) )
102 100 101 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) = )
103 102 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ = ⟨ ( le ‘ ndx ) , ⟩ )
104 35 sqxpeqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑣 × 𝑣 ) = ( 𝑉 × 𝑉 ) )
105 104 oveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) = ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) )
106 24 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) )
107 106 eqeq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ↔ ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ) )
108 24 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) )
109 108 eqeq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ) )
110 24 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) )
111 24 fveq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) )
112 110 111 eqeq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ↔ ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) )
113 112 ralbidv ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) )
114 107 109 113 3anbi123d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) ↔ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) ) )
115 105 114 rabeqbidv ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } = { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } )
116 31 fveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( dist ‘ 𝑟 ) = ( dist ‘ 𝑅 ) )
117 116 10 eqtr4di ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( dist ‘ 𝑟 ) = 𝐸 )
118 117 coeq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) = ( 𝐸𝑔 ) )
119 118 oveq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) = ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) )
120 115 119 mpteq12dv ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
121 120 rneqd ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
122 121 iuneq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) = 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) )
123 122 infeq1d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) = inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < ) )
124 29 29 123 mpoeq123dv ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) = ( 𝑥𝐵 , 𝑦𝐵 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < ) ) )
125 17 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝐷 = ( 𝑥𝐵 , 𝑦𝐵 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑉 × 𝑉 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝐹 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝐹 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝐹 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( 𝐸𝑔 ) ) ) , ℝ* , < ) ) )
126 124 125 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) = 𝐷 )
127 126 opeq2d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ = ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ )
128 95 103 127 tpeq123d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } = { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } )
129 89 128 uneq12d ( ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) )
130 23 129 csbied ( ( 𝜑 ∧ ( 𝑓 = 𝐹𝑟 = 𝑅 ) ) → ( Base ‘ 𝑟 ) / 𝑣 ( ( { ⟨ ( Base ‘ ndx ) , ran 𝑓 ⟩ , ⟨ ( +g ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( +g𝑟 ) 𝑞 ) ) ⟩ } ⟩ , ⟨ ( .r ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑓 ‘ ( 𝑝 ( .r𝑟 ) 𝑞 ) ) ⟩ } ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , ( Scalar ‘ 𝑟 ) ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , 𝑞𝑣 ( 𝑝 ∈ ( Base ‘ ( Scalar ‘ 𝑟 ) ) , 𝑥 ∈ { ( 𝑓𝑞 ) } ↦ ( 𝑓 ‘ ( 𝑝 ( ·𝑠𝑟 ) 𝑞 ) ) ) ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝑝𝑣 𝑞𝑣 { ⟨ ⟨ ( 𝑓𝑝 ) , ( 𝑓𝑞 ) ⟩ , ( 𝑝 ( ·𝑖𝑟 ) 𝑞 ) ⟩ } ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , ( ( TopOpen ‘ 𝑟 ) qTop 𝑓 ) ⟩ , ⟨ ( le ‘ ndx ) , ( ( 𝑓 ∘ ( le ‘ 𝑟 ) ) ∘ 𝑓 ) ⟩ , ⟨ ( dist ‘ ndx ) , ( 𝑥 ∈ ran 𝑓 , 𝑦 ∈ ran 𝑓 ↦ inf ( 𝑛 ∈ ℕ ran ( 𝑔 ∈ { ∈ ( ( 𝑣 × 𝑣 ) ↑m ( 1 ... 𝑛 ) ) ∣ ( ( 𝑓 ‘ ( 1st ‘ ( ‘ 1 ) ) ) = 𝑥 ∧ ( 𝑓 ‘ ( 2nd ‘ ( 𝑛 ) ) ) = 𝑦 ∧ ∀ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 𝑓 ‘ ( 2nd ‘ ( 𝑖 ) ) ) = ( 𝑓 ‘ ( 1st ‘ ( ‘ ( 𝑖 + 1 ) ) ) ) ) } ↦ ( ℝ*𝑠 Σg ( ( dist ‘ 𝑟 ) ∘ 𝑔 ) ) ) , ℝ* , < ) ) ⟩ } ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) )
131 fof ( 𝐹 : 𝑉onto𝐵𝐹 : 𝑉𝐵 )
132 19 131 syl ( 𝜑𝐹 : 𝑉𝐵 )
133 fvex ( Base ‘ 𝑅 ) ∈ V
134 2 133 eqeltrdi ( 𝜑𝑉 ∈ V )
135 fex ( ( 𝐹 : 𝑉𝐵𝑉 ∈ V ) → 𝐹 ∈ V )
136 132 134 135 syl2anc ( 𝜑𝐹 ∈ V )
137 20 elexd ( 𝜑𝑅 ∈ V )
138 tpex { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∈ V
139 tpex { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ∈ V
140 138 139 unex ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∈ V
141 tpex { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ∈ V
142 140 141 unex ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) ∈ V
143 142 a1i ( 𝜑 → ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) ∈ V )
144 22 130 136 137 143 ovmpod ( 𝜑 → ( 𝐹s 𝑅 ) = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) )
145 1 144 eqtrd ( 𝜑𝑈 = ( ( { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ , ⟨ ( +g ‘ ndx ) , ⟩ , ⟨ ( .r ‘ ndx ) , ⟩ } ∪ { ⟨ ( Scalar ‘ ndx ) , 𝐺 ⟩ , ⟨ ( ·𝑠 ‘ ndx ) , ⟩ , ⟨ ( ·𝑖 ‘ ndx ) , 𝐼 ⟩ } ) ∪ { ⟨ ( TopSet ‘ ndx ) , 𝑂 ⟩ , ⟨ ( le ‘ ndx ) , ⟩ , ⟨ ( dist ‘ ndx ) , 𝐷 ⟩ } ) )