Step |
Hyp |
Ref |
Expression |
1 |
|
lshpdisj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
lshpdisj.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
3 |
|
lshpdisj.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
4 |
|
lshpdisj.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
5 |
|
lshpdisj.h |
⊢ 𝐻 = ( LSHyp ‘ 𝑊 ) |
6 |
|
lshpdisj.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
7 |
|
lshpdisj.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝐻 ) |
8 |
|
lshpdisj.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
9 |
|
lshpdisj.e |
⊢ ( 𝜑 → ( 𝑈 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) = 𝑉 ) |
10 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
11 |
6 10
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
13 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
14 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
17 |
14 15 1 16 3
|
lspsnel |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
18 |
12 13 17
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ↔ ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ) ) |
19 |
1 3 4 5 11 7 8 9
|
lshpnel |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑈 ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → ¬ 𝑋 ∈ 𝑈 ) |
21 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
22 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → 𝑊 ∈ LVec ) |
23 |
21 5 11 7
|
lshplss |
⊢ ( 𝜑 → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ) |
25 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → 𝑋 ∈ 𝑉 ) |
26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
28 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → 𝑋 ∈ 𝑉 ) |
29 |
1 16 14 15 3 26 27 28
|
lspsneli |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
31 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) |
32 |
1 2 21 3 22 24 25 30 31
|
lspsnel4 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → ( 𝑋 ∈ 𝑈 ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) ) |
33 |
20 32
|
mtbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ∧ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 ) → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) |
34 |
33
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ≠ 0 → ¬ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) ) |
35 |
34
|
necon4ad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) ) |
36 |
|
eleq1 |
⊢ ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑣 ∈ 𝑈 ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 ) ) |
37 |
|
eqeq1 |
⊢ ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑣 = 0 ↔ ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) ) |
38 |
36 37
|
imbi12d |
⊢ ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( ( 𝑣 ∈ 𝑈 → 𝑣 = 0 ) ↔ ( ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) ∈ 𝑈 → ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) = 0 ) ) ) |
39 |
35 38
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑣 ∈ 𝑈 → 𝑣 = 0 ) ) ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑣 ∈ 𝑈 → 𝑣 = 0 ) ) ) ) |
41 |
40
|
com23 |
⊢ ( 𝜑 → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 ∈ 𝑈 → 𝑣 = 0 ) ) ) ) |
42 |
41
|
com24 |
⊢ ( 𝜑 → ( 𝑣 ∈ 𝑈 → ( 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) ) ) |
43 |
42
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) ∧ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) |
44 |
43
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( ∃ 𝑘 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) 𝑣 = ( 𝑘 ( ·𝑠 ‘ 𝑊 ) 𝑋 ) → 𝑣 = 0 ) ) |
45 |
18 44
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) → 𝑣 = 0 ) ) |
46 |
45
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝑈 ∧ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑣 = 0 ) ) |
47 |
|
elin |
⊢ ( 𝑣 ∈ ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ( 𝑣 ∈ 𝑈 ∧ 𝑣 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) |
48 |
|
velsn |
⊢ ( 𝑣 ∈ { 0 } ↔ 𝑣 = 0 ) |
49 |
46 47 48
|
3imtr4g |
⊢ ( 𝜑 → ( 𝑣 ∈ ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑣 ∈ { 0 } ) ) |
50 |
49
|
ssrdv |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ { 0 } ) |
51 |
1 21 3
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
52 |
11 8 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
53 |
21
|
lssincl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
54 |
11 23 52 53
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
55 |
2 21
|
lss0ss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) → { 0 } ⊆ ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ) |
56 |
11 54 55
|
syl2anc |
⊢ ( 𝜑 → { 0 } ⊆ ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) ) |
57 |
50 56
|
eqssd |
⊢ ( 𝜑 → ( 𝑈 ∩ ( 𝑁 ‘ { 𝑋 } ) ) = { 0 } ) |