| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmelval2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lsmelval2.s |
⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) |
| 3 |
|
lsmelval2.p |
⊢ ⊕ = ( LSSum ‘ 𝑊 ) |
| 4 |
|
lsmelval2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
lsmelval2.w |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 6 |
|
lsmelval2.t |
⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) |
| 7 |
|
lsmelval2.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) |
| 8 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑆 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 9 |
5 6 8
|
syl2anc |
⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 10 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 |
5 7 10
|
syl2anc |
⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 12 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 13 |
12 3
|
lsmelval |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 14 |
9 11 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑊 ∈ LMod ) |
| 16 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑇 ∈ 𝑆 ) |
| 17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑇 ) |
| 18 |
1 2
|
lssel |
⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑉 ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ 𝑉 ) |
| 20 |
1 2 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ) |
| 21 |
15 19 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ) |
| 22 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ) → ( 𝑁 ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 |
15 21 22
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ 𝑆 ) |
| 25 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑈 ) |
| 26 |
1 2
|
lssel |
⊢ ( ( 𝑈 ∈ 𝑆 ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑉 ) |
| 27 |
24 25 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ 𝑉 ) |
| 28 |
1 2 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) |
| 29 |
15 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) |
| 30 |
2
|
lsssubg |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) → ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 31 |
15 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 32 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ) → 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) |
| 33 |
15 19 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ) |
| 34 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ 𝑉 ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑧 } ) ) |
| 35 |
15 27 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑧 } ) ) |
| 36 |
12 3
|
lsmelvali |
⊢ ( ( ( ( 𝑁 ‘ { 𝑦 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑦 ∈ ( 𝑁 ‘ { 𝑦 } ) ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑧 } ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 37 |
23 31 33 35 36
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 38 |
|
eleq1a |
⊢ ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 40 |
2 3
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑦 } ) ∈ 𝑆 ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ 𝑆 ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ∈ 𝑆 ) |
| 41 |
15 21 29 40
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ∈ 𝑆 ) |
| 42 |
1 2 4 15 41
|
ellspsn6 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 43 |
39 42
|
sylibd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 44 |
43
|
reximdvva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 45 |
14 44
|
sylbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 46 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 47 |
2 4 15 16 17
|
ellspsn5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑦 } ) ⊆ 𝑇 ) |
| 48 |
3
|
lsmless1 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑦 } ) ⊆ 𝑇 ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 49 |
46 31 47 48
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) |
| 50 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 51 |
2 4 15 24 25
|
ellspsn5 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑈 ) |
| 52 |
3
|
lsmless2 |
⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑈 ) → ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 53 |
46 50 51 52
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 54 |
49 53
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 55 |
54
|
sseld |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( 𝑋 ∈ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 56 |
42 55
|
sylbird |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑈 ) ) → ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 57 |
56
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) → 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 58 |
45 57
|
impbid |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |
| 59 |
|
r19.42v |
⊢ ( ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 60 |
59
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ∃ 𝑦 ∈ 𝑇 ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 61 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ 𝑇 ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 62 |
60 61
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) |
| 63 |
58 62
|
bitrdi |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 ( 𝑁 ‘ { 𝑋 } ) ⊆ ( ( 𝑁 ‘ { 𝑦 } ) ⊕ ( 𝑁 ‘ { 𝑧 } ) ) ) ) ) |