| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
| 7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
| 11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
| 12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 14 |
|
mdetunilem5.ph |
⊢ ( 𝜓 → 𝜑 ) |
| 15 |
|
mdetunilem5.e |
⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
| 16 |
|
mdetunilem5.fgh |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) |
| 17 |
14 8
|
syl |
⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
| 18 |
14 9
|
syl |
⊢ ( 𝜓 → 𝑅 ∈ Ring ) |
| 19 |
18
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Ring ) |
| 20 |
16
|
simp1d |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 21 |
16
|
simp2d |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 22 |
3 6
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ) → ( 𝐹 + 𝐺 ) ∈ 𝐾 ) |
| 23 |
19 20 21 22
|
syl3anc |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐹 + 𝐺 ) ∈ 𝐾 ) |
| 24 |
16
|
simp3d |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
| 25 |
23 24
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ∈ 𝐾 ) |
| 26 |
1 3 2 17 18 25
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ∈ 𝐵 ) |
| 27 |
20 24
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ∈ 𝐾 ) |
| 28 |
1 3 2 17 18 27
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∈ 𝐵 ) |
| 29 |
21 24
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ∈ 𝐾 ) |
| 30 |
1 3 2 17 18 29
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ∈ 𝐵 ) |
| 31 |
|
snex |
⊢ { 𝐸 } ∈ V |
| 32 |
31
|
a1i |
⊢ ( 𝜓 → { 𝐸 } ∈ V ) |
| 33 |
15
|
snssd |
⊢ ( 𝜓 → { 𝐸 } ⊆ 𝑁 ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → { 𝐸 } ⊆ 𝑁 ) |
| 35 |
|
simp2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ { 𝐸 } ) |
| 36 |
34 35
|
sseldd |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ∈ 𝑁 ) |
| 37 |
36 20
|
syld3an2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
| 38 |
36 21
|
syld3an2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ { 𝐸 } ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
| 39 |
|
eqidd |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ) |
| 40 |
|
eqidd |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) |
| 41 |
32 17 37 38 39 40
|
offval22 |
⊢ ( 𝜓 → ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) ) |
| 42 |
41
|
eqcomd |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) ) |
| 43 |
|
mposnif |
⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ ( 𝐹 + 𝐺 ) ) |
| 44 |
|
mposnif |
⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) |
| 45 |
|
mposnif |
⊢ ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) |
| 46 |
44 45
|
oveq12i |
⊢ ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐹 ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ 𝐺 ) ) |
| 47 |
42 43 46
|
3eqtr4g |
⊢ ( 𝜓 → ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) |
| 48 |
|
ssid |
⊢ 𝑁 ⊆ 𝑁 |
| 49 |
|
resmpo |
⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
| 50 |
33 48 49
|
sylancl |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
| 51 |
|
resmpo |
⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
| 52 |
33 48 51
|
sylancl |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
| 53 |
|
resmpo |
⊢ ( ( { 𝐸 } ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
| 54 |
33 48 53
|
sylancl |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
| 55 |
52 54
|
oveq12d |
⊢ ( 𝜓 → ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) = ( ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∘f + ( 𝑎 ∈ { 𝐸 } , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) |
| 56 |
47 50 55
|
3eqtr4d |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) ) |
| 57 |
|
eldifsni |
⊢ ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) → 𝑎 ≠ 𝐸 ) |
| 58 |
57
|
3ad2ant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → 𝑎 ≠ 𝐸 ) |
| 59 |
58
|
neneqd |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → ¬ 𝑎 = 𝐸 ) |
| 60 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = 𝐻 ) |
| 61 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) = 𝐻 ) |
| 62 |
60 61
|
eqtr4d |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
| 63 |
59 62
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
| 64 |
63
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
| 65 |
|
difss |
⊢ ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 |
| 66 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) |
| 67 |
65 48 66
|
mp2an |
⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) |
| 68 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) |
| 69 |
65 48 68
|
mp2an |
⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) |
| 70 |
64 67 69
|
3eqtr4g |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) |
| 71 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) = 𝐻 ) |
| 72 |
60 71
|
eqtr4d |
⊢ ( ¬ 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
| 73 |
59 72
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) = if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
| 74 |
73
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
| 75 |
|
resmpo |
⊢ ( ( ( 𝑁 ∖ { 𝐸 } ) ⊆ 𝑁 ∧ 𝑁 ⊆ 𝑁 ) → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) |
| 76 |
65 48 75
|
mp2an |
⊢ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( 𝑎 ∈ ( 𝑁 ∖ { 𝐸 } ) , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) |
| 77 |
74 67 76
|
3eqtr4g |
⊢ ( 𝜓 → ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) |
| 78 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ∈ 𝐵 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ∈ 𝐵 ) ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ∈ 𝐵 ∧ 𝐸 ∈ 𝑁 ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) = ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ∘f + ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( { 𝐸 } × 𝑁 ) ) ) ) ∧ ( ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ∧ ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) = ( ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ↾ ( ( 𝑁 ∖ { 𝐸 } ) × 𝑁 ) ) ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |
| 79 |
14 26 28 30 15 56 70 77 78
|
syl332anc |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐹 + 𝐺 ) , 𝐻 ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , 𝐻 ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , 𝐻 ) ) ) ) ) |