Metamath Proof Explorer


Theorem mdetunilem6

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a 𝐴 = ( 𝑁 Mat 𝑅 )
mdetuni.b 𝐵 = ( Base ‘ 𝐴 )
mdetuni.k 𝐾 = ( Base ‘ 𝑅 )
mdetuni.0g 0 = ( 0g𝑅 )
mdetuni.1r 1 = ( 1r𝑅 )
mdetuni.pg + = ( +g𝑅 )
mdetuni.tg · = ( .r𝑅 )
mdetuni.n ( 𝜑𝑁 ∈ Fin )
mdetuni.r ( 𝜑𝑅 ∈ Ring )
mdetuni.ff ( 𝜑𝐷 : 𝐵𝐾 )
mdetuni.al ( 𝜑 → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
mdetuni.li ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( ( 𝐷𝑦 ) + ( 𝐷𝑧 ) ) ) )
mdetuni.sc ( 𝜑 → ∀ 𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( 𝑦 · ( 𝐷𝑧 ) ) ) )
mdetunilem6.ph ( 𝜓𝜑 )
mdetunilem6.ef ( 𝜓 → ( 𝐸𝑁𝐹𝑁𝐸𝐹 ) )
mdetunilem6.gh ( ( 𝜓𝑏𝑁 ) → ( 𝐺𝐾𝐻𝐾 ) )
mdetunilem6.i ( ( 𝜓𝑎𝑁𝑏𝑁 ) → 𝐼𝐾 )
Assertion mdetunilem6 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( ( invg𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 mdetuni.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 mdetuni.b 𝐵 = ( Base ‘ 𝐴 )
3 mdetuni.k 𝐾 = ( Base ‘ 𝑅 )
4 mdetuni.0g 0 = ( 0g𝑅 )
5 mdetuni.1r 1 = ( 1r𝑅 )
6 mdetuni.pg + = ( +g𝑅 )
7 mdetuni.tg · = ( .r𝑅 )
8 mdetuni.n ( 𝜑𝑁 ∈ Fin )
9 mdetuni.r ( 𝜑𝑅 ∈ Ring )
10 mdetuni.ff ( 𝜑𝐷 : 𝐵𝐾 )
11 mdetuni.al ( 𝜑 → ∀ 𝑥𝐵𝑦𝑁𝑧𝑁 ( ( 𝑦𝑧 ∧ ∀ 𝑤𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷𝑥 ) = 0 ) )
12 mdetuni.li ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( ( 𝐷𝑦 ) + ( 𝐷𝑧 ) ) ) )
13 mdetuni.sc ( 𝜑 → ∀ 𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷𝑥 ) = ( 𝑦 · ( 𝐷𝑧 ) ) ) )
14 mdetunilem6.ph ( 𝜓𝜑 )
15 mdetunilem6.ef ( 𝜓 → ( 𝐸𝑁𝐹𝑁𝐸𝐹 ) )
16 mdetunilem6.gh ( ( 𝜓𝑏𝑁 ) → ( 𝐺𝐾𝐻𝐾 ) )
17 mdetunilem6.i ( ( 𝜓𝑎𝑁𝑏𝑁 ) → 𝐼𝐾 )
18 15 simp1d ( 𝜓𝐸𝑁 )
19 16 simprd ( ( 𝜓𝑏𝑁 ) → 𝐻𝐾 )
20 19 3adant2 ( ( 𝜓𝑎𝑁𝑏𝑁 ) → 𝐻𝐾 )
21 16 simpld ( ( 𝜓𝑏𝑁 ) → 𝐺𝐾 )
22 21 3adant2 ( ( 𝜓𝑎𝑁𝑏𝑁 ) → 𝐺𝐾 )
23 ringgrp ( 𝑅 ∈ Ring → 𝑅 ∈ Grp )
24 14 9 23 3syl ( 𝜓𝑅 ∈ Grp )
25 24 adantr ( ( 𝜓𝑏𝑁 ) → 𝑅 ∈ Grp )
26 3 6 grpcl ( ( 𝑅 ∈ Grp ∧ 𝐻𝐾𝐺𝐾 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 )
27 25 19 21 26 syl3anc ( ( 𝜓𝑏𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 )
28 27 3adant2 ( ( 𝜓𝑎𝑁𝑏𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 )
29 28 17 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 )
30 20 22 29 3jca ( ( 𝜓𝑎𝑁𝑏𝑁 ) → ( 𝐻𝐾𝐺𝐾 ∧ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) )
31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 30 mdetunilem5 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) )
32 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 17 mdetunilem2 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = 0 )
33 15 simp2d ( 𝜓𝐹𝑁 )
34 20 17 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 )
35 20 22 34 3jca ( ( 𝜓𝑎𝑁𝑏𝑁 ) → ( 𝐻𝐾𝐺𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) )
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 35 mdetunilem5 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) )
37 15 simp3d ( 𝜓𝐸𝐹 )
38 37 necomd ( 𝜓𝐹𝐸 )
39 33 18 38 3jca ( 𝜓 → ( 𝐹𝑁𝐸𝑁𝐹𝐸 ) )
40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 19 17 mdetunilem2 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = 0 )
41 40 oveq1d ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 0 + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) )
42 37 neneqd ( 𝜓 → ¬ 𝐸 = 𝐹 )
43 eqtr2 ( ( 𝑎 = 𝐸𝑎 = 𝐹 ) → 𝐸 = 𝐹 )
44 42 43 nsyl ( 𝜓 → ¬ ( 𝑎 = 𝐸𝑎 = 𝐹 ) )
45 44 3ad2ant1 ( ( 𝜓𝑎𝑁𝑏𝑁 ) → ¬ ( 𝑎 = 𝐸𝑎 = 𝐹 ) )
46 ifcomnan ( ¬ ( 𝑎 = 𝐸𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) )
47 45 46 syl ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) )
48 47 mpoeq3dva ( 𝜓 → ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) = ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) )
49 48 fveq2d ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) )
50 14 10 syl ( 𝜓𝐷 : 𝐵𝐾 )
51 14 8 syl ( 𝜓𝑁 ∈ Fin )
52 22 17 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ∈ 𝐾 )
53 20 52 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ∈ 𝐾 )
54 1 3 2 51 24 53 matbas2d ( 𝜓 → ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ∈ 𝐵 )
55 50 54 ffvelrnd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 )
56 49 55 eqeltrrd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 )
57 3 6 4 grplid ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( 0 + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) )
58 24 56 57 syl2anc ( 𝜓 → ( 0 + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) )
59 36 41 58 3eqtrd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) )
60 ifcomnan ( ¬ ( 𝑎 = 𝐸𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) )
61 45 60 syl ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) )
62 61 mpoeq3dva ( 𝜓 → ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) )
63 62 fveq2d ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) )
64 59 63 49 3eqtr4d ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) )
65 22 17 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 )
66 20 22 65 3jca ( ( 𝜓𝑎𝑁𝑏𝑁 ) → ( 𝐻𝐾𝐺𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) )
67 1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 66 mdetunilem5 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) )
68 1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 21 17 mdetunilem2 ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = 0 )
69 68 oveq2d ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) )
70 ifcomnan ( ¬ ( 𝑎 = 𝐸𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) )
71 45 70 syl ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) )
72 71 mpoeq3dva ( 𝜓 → ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) = ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) )
73 72 fveq2d ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) )
74 20 17 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ∈ 𝐾 )
75 22 74 ifcld ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ∈ 𝐾 )
76 1 3 2 51 24 75 matbas2d ( 𝜓 → ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ∈ 𝐵 )
77 50 76 ffvelrnd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 )
78 73 77 eqeltrrd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 )
79 3 6 4 grprid ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) )
80 24 78 79 syl2anc ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) )
81 67 69 80 3eqtrd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) )
82 ifcomnan ( ¬ ( 𝑎 = 𝐸𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) )
83 45 82 syl ( ( 𝜓𝑎𝑁𝑏𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) )
84 83 mpoeq3dva ( 𝜓 → ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) )
85 84 fveq2d ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) )
86 81 85 73 3eqtr4d ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) )
87 64 86 oveq12d ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) )
88 31 32 87 3eqtr3rd ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 )
89 eqid ( invg𝑅 ) = ( invg𝑅 )
90 3 6 4 89 grpinvid1 ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ∧ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( ( invg𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) )
91 24 55 77 90 syl3anc ( 𝜓 → ( ( ( invg𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) )
92 88 91 mpbird ( 𝜓 → ( ( invg𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) )
93 92 eqcomd ( 𝜓 → ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( ( invg𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎𝑁 , 𝑏𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) )