Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
14 |
|
mdetunilem6.ph |
⊢ ( 𝜓 → 𝜑 ) |
15 |
|
mdetunilem6.ef |
⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹 ) ) |
16 |
|
mdetunilem6.gh |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾 ) ) |
17 |
|
mdetunilem6.i |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐼 ∈ 𝐾 ) |
18 |
15
|
simp1d |
⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
19 |
16
|
simprd |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
20 |
19
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
21 |
16
|
simpld |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐺 ∈ 𝐾 ) |
23 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
24 |
14 9 23
|
3syl |
⊢ ( 𝜓 → 𝑅 ∈ Grp ) |
25 |
24
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝑅 ∈ Grp ) |
26 |
3 6
|
grpcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
27 |
25 19 21 26
|
syl3anc |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
28 |
27
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 + 𝐺 ) ∈ 𝐾 ) |
29 |
28 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) |
30 |
20 22 29
|
3jca |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ∈ 𝐾 ) ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 30
|
mdetunilem5 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) ) |
32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 27 17
|
mdetunilem2 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = 0 ) |
33 |
15
|
simp2d |
⊢ ( 𝜓 → 𝐹 ∈ 𝑁 ) |
34 |
20 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) |
35 |
20 22 34
|
3jca |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ∈ 𝐾 ) ) |
36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 35
|
mdetunilem5 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) ) |
37 |
15
|
simp3d |
⊢ ( 𝜓 → 𝐸 ≠ 𝐹 ) |
38 |
37
|
necomd |
⊢ ( 𝜓 → 𝐹 ≠ 𝐸 ) |
39 |
33 18 38
|
3jca |
⊢ ( 𝜓 → ( 𝐹 ∈ 𝑁 ∧ 𝐸 ∈ 𝑁 ∧ 𝐹 ≠ 𝐸 ) ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 19 17
|
mdetunilem2 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = 0 ) |
41 |
40
|
oveq1d |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) ) |
42 |
37
|
neneqd |
⊢ ( 𝜓 → ¬ 𝐸 = 𝐹 ) |
43 |
|
eqtr2 |
⊢ ( ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → 𝐸 = 𝐹 ) |
44 |
42 43
|
nsyl |
⊢ ( 𝜓 → ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) ) |
45 |
44
|
3ad2ant1 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) ) |
46 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
47 |
45 46
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
48 |
47
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) |
49 |
48
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
50 |
14 10
|
syl |
⊢ ( 𝜓 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
51 |
14 8
|
syl |
⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
52 |
22 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ∈ 𝐾 ) |
53 |
20 52
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ∈ 𝐾 ) |
54 |
1 3 2 51 24 53
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ∈ 𝐵 ) |
55 |
50 54
|
ffvelrnd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
56 |
49 55
|
eqeltrrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
57 |
3 6 4
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
58 |
24 56 57
|
syl2anc |
⊢ ( 𝜓 → ( 0 + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
59 |
36 41 58
|
3eqtrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
60 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
61 |
45 60
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) |
62 |
61
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) |
63 |
62
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐻 , 𝐼 ) ) ) ) ) |
64 |
59 63 49
|
3eqtr4d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) |
65 |
22 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) |
66 |
20 22 65
|
3jca |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → ( 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ∈ 𝐾 ) ) |
67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 66
|
mdetunilem5 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) ) |
68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 39 21 17
|
mdetunilem2 |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = 0 ) |
69 |
68
|
oveq2d |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐺 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) ) |
70 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
71 |
45 70
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) = if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
72 |
71
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) |
73 |
72
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
74 |
20 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ∈ 𝐾 ) |
75 |
22 74
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ∈ 𝐾 ) |
76 |
1 3 2 51 24 75
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ∈ 𝐵 ) |
77 |
50 76
|
ffvelrnd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
78 |
73 77
|
eqeltrrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) |
79 |
3 6 4
|
grprid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
80 |
24 78 79
|
syl2anc |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) + 0 ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
81 |
67 69 80
|
3eqtrd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , 𝐻 , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
82 |
|
ifcomnan |
⊢ ( ¬ ( 𝑎 = 𝐸 ∧ 𝑎 = 𝐹 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
83 |
45 82
|
syl |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) = if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) |
84 |
83
|
mpoeq3dva |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) |
85 |
84
|
fveq2d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , if ( 𝑎 = 𝐸 , 𝐺 , 𝐼 ) ) ) ) ) |
86 |
81 85 73
|
3eqtr4d |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) |
87 |
64 86
|
oveq12d |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , ( 𝐻 + 𝐺 ) , 𝐼 ) ) ) ) ) = ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) ) |
88 |
31 32 87
|
3eqtr3rd |
⊢ ( 𝜓 → ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) |
89 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
90 |
3 6 4 89
|
grpinvid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ∈ 𝐾 ∧ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ∈ 𝐾 ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) ) |
91 |
24 55 77 90
|
syl3anc |
⊢ ( 𝜓 → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ↔ ( ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) + ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) = 0 ) ) |
92 |
88 91
|
mpbird |
⊢ ( 𝜓 → ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) = ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) ) |
93 |
92
|
eqcomd |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐺 , if ( 𝑎 = 𝐹 , 𝐻 , 𝐼 ) ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐻 , if ( 𝑎 = 𝐹 , 𝐺 , 𝐼 ) ) ) ) ) ) |