Metamath Proof Explorer


Theorem ovoliunlem3

Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014)

Ref Expression
Hypotheses ovoliun.t 𝑇 = seq 1 ( + , 𝐺 )
ovoliun.g 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) )
ovoliun.a ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ )
ovoliun.v ( ( 𝜑𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
ovoliun.r ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
ovoliun.b ( 𝜑𝐵 ∈ ℝ+ )
Assertion ovoliunlem3 ( 𝜑 → ( vol* ‘ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ovoliun.t 𝑇 = seq 1 ( + , 𝐺 )
2 ovoliun.g 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) )
3 ovoliun.a ( ( 𝜑𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ )
4 ovoliun.v ( ( 𝜑𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ )
5 ovoliun.r ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
6 ovoliun.b ( 𝜑𝐵 ∈ ℝ+ )
7 nfcv 𝑚 𝐴
8 nfcsb1v 𝑛 𝑚 / 𝑛 𝐴
9 csbeq1a ( 𝑛 = 𝑚𝐴 = 𝑚 / 𝑛 𝐴 )
10 7 8 9 cbviun 𝑛 ∈ ℕ 𝐴 = 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴
11 10 fveq2i ( vol* ‘ 𝑛 ∈ ℕ 𝐴 ) = ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 )
12 2nn 2 ∈ ℕ
13 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
14 nnexpcl ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ )
15 12 13 14 sylancr ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ )
16 15 nnrpd ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ+ )
17 rpdivcl ( ( 𝐵 ∈ ℝ+ ∧ ( 2 ↑ 𝑛 ) ∈ ℝ+ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ )
18 6 16 17 syl2an ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ )
19 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
20 19 ovolgelb ( ( 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ∧ ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) )
21 3 4 18 20 syl3anc ( ( 𝜑𝑛 ∈ ℕ ) → ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) )
22 21 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) )
23 ovex ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∈ V
24 nnenom ℕ ≈ ω
25 coeq2 ( 𝑓 = ( 𝑔𝑛 ) → ( (,) ∘ 𝑓 ) = ( (,) ∘ ( 𝑔𝑛 ) ) )
26 25 rneqd ( 𝑓 = ( 𝑔𝑛 ) → ran ( (,) ∘ 𝑓 ) = ran ( (,) ∘ ( 𝑔𝑛 ) ) )
27 26 unieqd ( 𝑓 = ( 𝑔𝑛 ) → ran ( (,) ∘ 𝑓 ) = ran ( (,) ∘ ( 𝑔𝑛 ) ) )
28 27 sseq2d ( 𝑓 = ( 𝑔𝑛 ) → ( 𝐴 ran ( (,) ∘ 𝑓 ) ↔ 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ) )
29 coeq2 ( 𝑓 = ( 𝑔𝑛 ) → ( ( abs ∘ − ) ∘ 𝑓 ) = ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) )
30 29 seqeq3d ( 𝑓 = ( 𝑔𝑛 ) → seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) )
31 30 rneqd ( 𝑓 = ( 𝑔𝑛 ) → ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) )
32 31 supeq1d ( 𝑓 = ( 𝑔𝑛 ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) )
33 32 breq1d ( 𝑓 = ( 𝑔𝑛 ) → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) )
34 28 33 anbi12d ( 𝑓 = ( 𝑔𝑛 ) → ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) )
35 23 24 34 axcc4 ( ∀ 𝑛 ∈ ℕ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) )
36 22 35 syl ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) )
37 xpnnen ( ℕ × ℕ ) ≈ ℕ
38 37 ensymi ℕ ≈ ( ℕ × ℕ )
39 bren ( ℕ ≈ ( ℕ × ℕ ) ↔ ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) )
40 38 39 mpbi 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ )
41 nfcv 𝑚 ( vol* ‘ 𝐴 )
42 nfcv 𝑛 vol*
43 42 8 nffv 𝑛 ( vol* ‘ 𝑚 / 𝑛 𝐴 )
44 9 fveq2d ( 𝑛 = 𝑚 → ( vol* ‘ 𝐴 ) = ( vol* ‘ 𝑚 / 𝑛 𝐴 ) )
45 41 43 44 cbvmpt ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ 𝑚 / 𝑛 𝐴 ) )
46 2 45 eqtri 𝐺 = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ 𝑚 / 𝑛 𝐴 ) )
47 3 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ )
48 nfv 𝑚 𝐴 ⊆ ℝ
49 nfcv 𝑛
50 8 49 nfss 𝑛 𝑚 / 𝑛 𝐴 ⊆ ℝ
51 9 sseq1d ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ℝ ↔ 𝑚 / 𝑛 𝐴 ⊆ ℝ ) )
52 48 50 51 cbvralw ( ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ⊆ ℝ )
53 47 52 sylib ( 𝜑 → ∀ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ⊆ ℝ )
54 53 r19.21bi ( ( 𝜑𝑚 ∈ ℕ ) → 𝑚 / 𝑛 𝐴 ⊆ ℝ )
55 54 ad4ant14 ( ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 / 𝑛 𝐴 ⊆ ℝ )
56 4 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ )
57 41 nfel1 𝑚 ( vol* ‘ 𝐴 ) ∈ ℝ
58 43 nfel1 𝑛 ( vol* ‘ 𝑚 / 𝑛 𝐴 ) ∈ ℝ
59 44 eleq1d ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ 𝑚 / 𝑛 𝐴 ) ∈ ℝ ) )
60 57 58 59 cbvralw ( ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ∀ 𝑚 ∈ ℕ ( vol* ‘ 𝑚 / 𝑛 𝐴 ) ∈ ℝ )
61 56 60 sylib ( 𝜑 → ∀ 𝑚 ∈ ℕ ( vol* ‘ 𝑚 / 𝑛 𝐴 ) ∈ ℝ )
62 61 r19.21bi ( ( 𝜑𝑚 ∈ ℕ ) → ( vol* ‘ 𝑚 / 𝑛 𝐴 ) ∈ ℝ )
63 62 ad4ant14 ( ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ 𝑚 / 𝑛 𝐴 ) ∈ ℝ )
64 5 ad2antrr ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ )
65 6 ad2antrr ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝐵 ∈ ℝ+ )
66 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) )
67 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗𝑘 ) ) ) ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗𝑘 ) ) ) ) ) )
68 eqid ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑔 ‘ ( 1st ‘ ( 𝑗𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝑗𝑘 ) ) ) )
69 simplr ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) )
70 simprl ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) )
71 simprr ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) )
72 nfv 𝑚 ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) )
73 nfcv 𝑛 ran ( (,) ∘ ( 𝑔𝑚 ) )
74 8 73 nfss 𝑛 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) )
75 nfcv 𝑛 sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < )
76 nfcv 𝑛
77 nfcv 𝑛 +
78 nfcv 𝑛 ( 𝐵 / ( 2 ↑ 𝑚 ) )
79 43 77 78 nfov 𝑛 ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) )
80 75 76 79 nfbr 𝑛 sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) )
81 74 80 nfan 𝑛 ( 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) )
82 fveq2 ( 𝑛 = 𝑚 → ( 𝑔𝑛 ) = ( 𝑔𝑚 ) )
83 82 coeq2d ( 𝑛 = 𝑚 → ( (,) ∘ ( 𝑔𝑛 ) ) = ( (,) ∘ ( 𝑔𝑚 ) ) )
84 83 rneqd ( 𝑛 = 𝑚 → ran ( (,) ∘ ( 𝑔𝑛 ) ) = ran ( (,) ∘ ( 𝑔𝑚 ) ) )
85 84 unieqd ( 𝑛 = 𝑚 ran ( (,) ∘ ( 𝑔𝑛 ) ) = ran ( (,) ∘ ( 𝑔𝑚 ) ) )
86 9 85 sseq12d ( 𝑛 = 𝑚 → ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ↔ 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) ) )
87 82 coeq2d ( 𝑛 = 𝑚 → ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) )
88 87 seqeq3d ( 𝑛 = 𝑚 → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) )
89 88 rneqd ( 𝑛 = 𝑚 → ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) = ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) )
90 89 supeq1d ( 𝑛 = 𝑚 → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) )
91 oveq2 ( 𝑛 = 𝑚 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑚 ) )
92 91 oveq2d ( 𝑛 = 𝑚 → ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 / ( 2 ↑ 𝑚 ) ) )
93 44 92 oveq12d ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) )
94 90 93 breq12d ( 𝑛 = 𝑚 → ( sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ↔ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) )
95 86 94 anbi12d ( 𝑛 = 𝑚 → ( ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) ) )
96 72 81 95 cbvralw ( ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ∀ 𝑚 ∈ ℕ ( 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) )
97 71 96 sylib ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∀ 𝑚 ∈ ℕ ( 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) )
98 97 r19.21bi ( ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) ) )
99 98 simpld ( ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → 𝑚 / 𝑛 𝐴 ran ( (,) ∘ ( 𝑔𝑚 ) ) )
100 98 simprd ( ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑚 ∈ ℕ ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑚 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝑚 / 𝑛 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑚 ) ) ) )
101 1 46 55 63 64 65 66 67 68 69 70 99 100 ovoliunlem2 ( ( ( 𝜑𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) ∧ ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )
102 101 exp31 ( 𝜑 → ( 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) )
103 102 exlimdv ( 𝜑 → ( ∃ 𝑗 𝑗 : ℕ –1-1-onto→ ( ℕ × ℕ ) → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) ) )
104 40 103 mpi ( 𝜑 → ( ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) )
105 104 exlimdv ( 𝜑 → ( ∃ 𝑔 ( 𝑔 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ ∀ 𝑛 ∈ ℕ ( 𝐴 ran ( (,) ∘ ( 𝑔𝑛 ) ) ∧ sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝑔𝑛 ) ) ) , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) )
106 36 105 mpd ( 𝜑 → ( vol* ‘ 𝑚 ∈ ℕ 𝑚 / 𝑛 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )
107 11 106 eqbrtrid ( 𝜑 → ( vol* ‘ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) )