| Step |
Hyp |
Ref |
Expression |
| 1 |
|
perfectALTVlem.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ ) |
| 2 |
|
perfectALTVlem.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℕ ) |
| 3 |
|
perfectALTVlem.3 |
⊢ ( 𝜑 → 𝐵 ∈ Odd ) |
| 4 |
|
perfectALTVlem.4 |
⊢ ( 𝜑 → ( 1 σ ( ( 2 ↑ 𝐴 ) · 𝐵 ) ) = ( 2 · ( ( 2 ↑ 𝐴 ) · 𝐵 ) ) ) |
| 5 |
|
2nn |
⊢ 2 ∈ ℕ |
| 6 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0 ) |
| 7 |
|
peano2nn0 |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 9 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ ( 𝐴 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) |
| 10 |
5 8 9
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) |
| 11 |
|
2re |
⊢ 2 ∈ ℝ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 13 |
1
|
peano2nnd |
⊢ ( 𝜑 → ( 𝐴 + 1 ) ∈ ℕ ) |
| 14 |
|
1lt2 |
⊢ 1 < 2 |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 16 |
|
expgt1 |
⊢ ( ( 2 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℕ ∧ 1 < 2 ) → 1 < ( 2 ↑ ( 𝐴 + 1 ) ) ) |
| 17 |
12 13 15 16
|
syl3anc |
⊢ ( 𝜑 → 1 < ( 2 ↑ ( 𝐴 + 1 ) ) ) |
| 18 |
|
1nn |
⊢ 1 ∈ ℕ |
| 19 |
|
nnsub |
⊢ ( ( 1 ∈ ℕ ∧ ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) → ( 1 < ( 2 ↑ ( 𝐴 + 1 ) ) ↔ ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℕ ) ) |
| 20 |
18 10 19
|
sylancr |
⊢ ( 𝜑 → ( 1 < ( 2 ↑ ( 𝐴 + 1 ) ) ↔ ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℕ ) ) |
| 21 |
17 20
|
mpbid |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℕ ) |
| 22 |
10
|
nnzd |
⊢ ( 𝜑 → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℤ ) |
| 23 |
|
peano2zm |
⊢ ( ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℤ → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℤ ) |
| 24 |
22 23
|
syl |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℤ ) |
| 25 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 26 |
|
sgmnncl |
⊢ ( ( 1 ∈ ℕ0 ∧ 𝐵 ∈ ℕ ) → ( 1 σ 𝐵 ) ∈ ℕ ) |
| 27 |
25 2 26
|
sylancr |
⊢ ( 𝜑 → ( 1 σ 𝐵 ) ∈ ℕ ) |
| 28 |
27
|
nnzd |
⊢ ( 𝜑 → ( 1 σ 𝐵 ) ∈ ℤ ) |
| 29 |
|
dvdsmul1 |
⊢ ( ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 1 σ 𝐵 ) ∈ ℤ ) → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) · ( 1 σ 𝐵 ) ) ) |
| 30 |
24 28 29
|
syl2anc |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) · ( 1 σ 𝐵 ) ) ) |
| 31 |
|
2cn |
⊢ 2 ∈ ℂ |
| 32 |
|
expp1 |
⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ ( 𝐴 + 1 ) ) = ( ( 2 ↑ 𝐴 ) · 2 ) ) |
| 33 |
31 6 32
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ ( 𝐴 + 1 ) ) = ( ( 2 ↑ 𝐴 ) · 2 ) ) |
| 34 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 35 |
5 6 34
|
sylancr |
⊢ ( 𝜑 → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 36 |
35
|
nncnd |
⊢ ( 𝜑 → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
| 37 |
|
mulcom |
⊢ ( ( ( 2 ↑ 𝐴 ) ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 2 ↑ 𝐴 ) · 2 ) = ( 2 · ( 2 ↑ 𝐴 ) ) ) |
| 38 |
36 31 37
|
sylancl |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐴 ) · 2 ) = ( 2 · ( 2 ↑ 𝐴 ) ) ) |
| 39 |
33 38
|
eqtrd |
⊢ ( 𝜑 → ( 2 ↑ ( 𝐴 + 1 ) ) = ( 2 · ( 2 ↑ 𝐴 ) ) ) |
| 40 |
39
|
oveq1d |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) · 𝐵 ) = ( ( 2 · ( 2 ↑ 𝐴 ) ) · 𝐵 ) ) |
| 41 |
31
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 42 |
2
|
nncnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 43 |
41 36 42
|
mulassd |
⊢ ( 𝜑 → ( ( 2 · ( 2 ↑ 𝐴 ) ) · 𝐵 ) = ( 2 · ( ( 2 ↑ 𝐴 ) · 𝐵 ) ) ) |
| 44 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 45 |
|
isodd7 |
⊢ ( 𝐵 ∈ Odd ↔ ( 𝐵 ∈ ℤ ∧ ( 2 gcd 𝐵 ) = 1 ) ) |
| 46 |
45
|
simprbi |
⊢ ( 𝐵 ∈ Odd → ( 2 gcd 𝐵 ) = 1 ) |
| 47 |
3 46
|
syl |
⊢ ( 𝜑 → ( 2 gcd 𝐵 ) = 1 ) |
| 48 |
|
2z |
⊢ 2 ∈ ℤ |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 50 |
2
|
nnzd |
⊢ ( 𝜑 → 𝐵 ∈ ℤ ) |
| 51 |
|
rpexp1i |
⊢ ( ( 2 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( ( 2 gcd 𝐵 ) = 1 → ( ( 2 ↑ 𝐴 ) gcd 𝐵 ) = 1 ) ) |
| 52 |
49 50 6 51
|
syl3anc |
⊢ ( 𝜑 → ( ( 2 gcd 𝐵 ) = 1 → ( ( 2 ↑ 𝐴 ) gcd 𝐵 ) = 1 ) ) |
| 53 |
47 52
|
mpd |
⊢ ( 𝜑 → ( ( 2 ↑ 𝐴 ) gcd 𝐵 ) = 1 ) |
| 54 |
|
sgmmul |
⊢ ( ( 1 ∈ ℂ ∧ ( ( 2 ↑ 𝐴 ) ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ ( ( 2 ↑ 𝐴 ) gcd 𝐵 ) = 1 ) ) → ( 1 σ ( ( 2 ↑ 𝐴 ) · 𝐵 ) ) = ( ( 1 σ ( 2 ↑ 𝐴 ) ) · ( 1 σ 𝐵 ) ) ) |
| 55 |
44 35 2 53 54
|
syl13anc |
⊢ ( 𝜑 → ( 1 σ ( ( 2 ↑ 𝐴 ) · 𝐵 ) ) = ( ( 1 σ ( 2 ↑ 𝐴 ) ) · ( 1 σ 𝐵 ) ) ) |
| 56 |
1
|
nncnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 57 |
|
pncan1 |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 58 |
56 57
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 59 |
58
|
oveq2d |
⊢ ( 𝜑 → ( 2 ↑ ( ( 𝐴 + 1 ) − 1 ) ) = ( 2 ↑ 𝐴 ) ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝜑 → ( 1 σ ( 2 ↑ ( ( 𝐴 + 1 ) − 1 ) ) ) = ( 1 σ ( 2 ↑ 𝐴 ) ) ) |
| 61 |
|
1sgm2ppw |
⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( 1 σ ( 2 ↑ ( ( 𝐴 + 1 ) − 1 ) ) ) = ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) |
| 62 |
13 61
|
syl |
⊢ ( 𝜑 → ( 1 σ ( 2 ↑ ( ( 𝐴 + 1 ) − 1 ) ) ) = ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) |
| 63 |
60 62
|
eqtr3d |
⊢ ( 𝜑 → ( 1 σ ( 2 ↑ 𝐴 ) ) = ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) |
| 64 |
63
|
oveq1d |
⊢ ( 𝜑 → ( ( 1 σ ( 2 ↑ 𝐴 ) ) · ( 1 σ 𝐵 ) ) = ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) · ( 1 σ 𝐵 ) ) ) |
| 65 |
55 4 64
|
3eqtr3d |
⊢ ( 𝜑 → ( 2 · ( ( 2 ↑ 𝐴 ) · 𝐵 ) ) = ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) · ( 1 σ 𝐵 ) ) ) |
| 66 |
40 43 65
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) · 𝐵 ) = ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) · ( 1 σ 𝐵 ) ) ) |
| 67 |
30 66
|
breqtrrd |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ ( ( 2 ↑ ( 𝐴 + 1 ) ) · 𝐵 ) ) |
| 68 |
24 22
|
gcdcomd |
⊢ ( 𝜑 → ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) gcd ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( 2 ↑ ( 𝐴 + 1 ) ) gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) ) |
| 69 |
|
nnpw2evenALTV |
⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ Even ) |
| 70 |
|
evenm1odd |
⊢ ( ( 2 ↑ ( 𝐴 + 1 ) ) ∈ Even → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ Odd ) |
| 71 |
|
isodd7 |
⊢ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ Odd ↔ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 2 gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 ) ) |
| 72 |
71
|
simprbi |
⊢ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ Odd → ( 2 gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 ) |
| 73 |
13 69 70 72
|
4syl |
⊢ ( 𝜑 → ( 2 gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 ) |
| 74 |
|
rpexp1i |
⊢ ( ( 2 ∈ ℤ ∧ ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 𝐴 + 1 ) ∈ ℕ0 ) → ( ( 2 gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 → ( ( 2 ↑ ( 𝐴 + 1 ) ) gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 ) ) |
| 75 |
49 24 8 74
|
syl3anc |
⊢ ( 𝜑 → ( ( 2 gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 → ( ( 2 ↑ ( 𝐴 + 1 ) ) gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 ) ) |
| 76 |
73 75
|
mpd |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) gcd ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) = 1 ) |
| 77 |
68 76
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) gcd ( 2 ↑ ( 𝐴 + 1 ) ) ) = 1 ) |
| 78 |
|
coprmdvds |
⊢ ( ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℤ ∧ ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ ( ( 2 ↑ ( 𝐴 + 1 ) ) · 𝐵 ) ∧ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) gcd ( 2 ↑ ( 𝐴 + 1 ) ) ) = 1 ) → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ 𝐵 ) ) |
| 79 |
24 22 50 78
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ ( ( 2 ↑ ( 𝐴 + 1 ) ) · 𝐵 ) ∧ ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) gcd ( 2 ↑ ( 𝐴 + 1 ) ) ) = 1 ) → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ 𝐵 ) ) |
| 80 |
67 77 79
|
mp2and |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ 𝐵 ) |
| 81 |
|
nndivdvds |
⊢ ( ( 𝐵 ∈ ℕ ∧ ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℕ ) → ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ 𝐵 ↔ ( 𝐵 / ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) ∈ ℕ ) ) |
| 82 |
2 21 81
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∥ 𝐵 ↔ ( 𝐵 / ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) ∈ ℕ ) ) |
| 83 |
80 82
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 / ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) ∈ ℕ ) |
| 84 |
10 21 83
|
3jca |
⊢ ( 𝜑 → ( ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ∧ ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ∈ ℕ ∧ ( 𝐵 / ( ( 2 ↑ ( 𝐴 + 1 ) ) − 1 ) ) ∈ ℕ ) ) |