Metamath Proof Explorer


Theorem perfectALTVlem1

Description: Lemma for perfectALTV . (Contributed by Mario Carneiro, 7-Jun-2016) (Revised by AV, 1-Jul-2020)

Ref Expression
Hypotheses perfectALTVlem.1 φ A
perfectALTVlem.2 φ B
perfectALTVlem.3 φ B Odd
perfectALTVlem.4 φ 1 σ 2 A B = 2 2 A B
Assertion perfectALTVlem1 φ 2 A + 1 2 A + 1 1 B 2 A + 1 1

Proof

Step Hyp Ref Expression
1 perfectALTVlem.1 φ A
2 perfectALTVlem.2 φ B
3 perfectALTVlem.3 φ B Odd
4 perfectALTVlem.4 φ 1 σ 2 A B = 2 2 A B
5 2nn 2
6 1 nnnn0d φ A 0
7 peano2nn0 A 0 A + 1 0
8 6 7 syl φ A + 1 0
9 nnexpcl 2 A + 1 0 2 A + 1
10 5 8 9 sylancr φ 2 A + 1
11 2re 2
12 11 a1i φ 2
13 1 peano2nnd φ A + 1
14 1lt2 1 < 2
15 14 a1i φ 1 < 2
16 expgt1 2 A + 1 1 < 2 1 < 2 A + 1
17 12 13 15 16 syl3anc φ 1 < 2 A + 1
18 1nn 1
19 nnsub 1 2 A + 1 1 < 2 A + 1 2 A + 1 1
20 18 10 19 sylancr φ 1 < 2 A + 1 2 A + 1 1
21 17 20 mpbid φ 2 A + 1 1
22 10 nnzd φ 2 A + 1
23 peano2zm 2 A + 1 2 A + 1 1
24 22 23 syl φ 2 A + 1 1
25 1nn0 1 0
26 sgmnncl 1 0 B 1 σ B
27 25 2 26 sylancr φ 1 σ B
28 27 nnzd φ 1 σ B
29 dvdsmul1 2 A + 1 1 1 σ B 2 A + 1 1 2 A + 1 1 1 σ B
30 24 28 29 syl2anc φ 2 A + 1 1 2 A + 1 1 1 σ B
31 2cn 2
32 expp1 2 A 0 2 A + 1 = 2 A 2
33 31 6 32 sylancr φ 2 A + 1 = 2 A 2
34 nnexpcl 2 A 0 2 A
35 5 6 34 sylancr φ 2 A
36 35 nncnd φ 2 A
37 mulcom 2 A 2 2 A 2 = 2 2 A
38 36 31 37 sylancl φ 2 A 2 = 2 2 A
39 33 38 eqtrd φ 2 A + 1 = 2 2 A
40 39 oveq1d φ 2 A + 1 B = 2 2 A B
41 31 a1i φ 2
42 2 nncnd φ B
43 41 36 42 mulassd φ 2 2 A B = 2 2 A B
44 1cnd φ 1
45 isodd7 B Odd B 2 gcd B = 1
46 45 simprbi B Odd 2 gcd B = 1
47 3 46 syl φ 2 gcd B = 1
48 2z 2
49 48 a1i φ 2
50 2 nnzd φ B
51 rpexp1i 2 B A 0 2 gcd B = 1 2 A gcd B = 1
52 49 50 6 51 syl3anc φ 2 gcd B = 1 2 A gcd B = 1
53 47 52 mpd φ 2 A gcd B = 1
54 sgmmul 1 2 A B 2 A gcd B = 1 1 σ 2 A B = 1 σ 2 A 1 σ B
55 44 35 2 53 54 syl13anc φ 1 σ 2 A B = 1 σ 2 A 1 σ B
56 1 nncnd φ A
57 pncan1 A A + 1 - 1 = A
58 56 57 syl φ A + 1 - 1 = A
59 58 oveq2d φ 2 A + 1 - 1 = 2 A
60 59 oveq2d φ 1 σ 2 A + 1 - 1 = 1 σ 2 A
61 1sgm2ppw A + 1 1 σ 2 A + 1 - 1 = 2 A + 1 1
62 13 61 syl φ 1 σ 2 A + 1 - 1 = 2 A + 1 1
63 60 62 eqtr3d φ 1 σ 2 A = 2 A + 1 1
64 63 oveq1d φ 1 σ 2 A 1 σ B = 2 A + 1 1 1 σ B
65 55 4 64 3eqtr3d φ 2 2 A B = 2 A + 1 1 1 σ B
66 40 43 65 3eqtrd φ 2 A + 1 B = 2 A + 1 1 1 σ B
67 30 66 breqtrrd φ 2 A + 1 1 2 A + 1 B
68 24 22 gcdcomd φ 2 A + 1 1 gcd 2 A + 1 = 2 A + 1 gcd 2 A + 1 1
69 nnpw2evenALTV A + 1 2 A + 1 Even
70 13 69 syl φ 2 A + 1 Even
71 evenm1odd 2 A + 1 Even 2 A + 1 1 Odd
72 70 71 syl φ 2 A + 1 1 Odd
73 isodd7 2 A + 1 1 Odd 2 A + 1 1 2 gcd 2 A + 1 1 = 1
74 73 simprbi 2 A + 1 1 Odd 2 gcd 2 A + 1 1 = 1
75 72 74 syl φ 2 gcd 2 A + 1 1 = 1
76 rpexp1i 2 2 A + 1 1 A + 1 0 2 gcd 2 A + 1 1 = 1 2 A + 1 gcd 2 A + 1 1 = 1
77 49 24 8 76 syl3anc φ 2 gcd 2 A + 1 1 = 1 2 A + 1 gcd 2 A + 1 1 = 1
78 75 77 mpd φ 2 A + 1 gcd 2 A + 1 1 = 1
79 68 78 eqtrd φ 2 A + 1 1 gcd 2 A + 1 = 1
80 coprmdvds 2 A + 1 1 2 A + 1 B 2 A + 1 1 2 A + 1 B 2 A + 1 1 gcd 2 A + 1 = 1 2 A + 1 1 B
81 24 22 50 80 syl3anc φ 2 A + 1 1 2 A + 1 B 2 A + 1 1 gcd 2 A + 1 = 1 2 A + 1 1 B
82 67 79 81 mp2and φ 2 A + 1 1 B
83 nndivdvds B 2 A + 1 1 2 A + 1 1 B B 2 A + 1 1
84 2 21 83 syl2anc φ 2 A + 1 1 B B 2 A + 1 1
85 82 84 mpbid φ B 2 A + 1 1
86 10 21 85 3jca φ 2 A + 1 2 A + 1 1 B 2 A + 1 1