Step |
Hyp |
Ref |
Expression |
1 |
|
perfectALTVlem.1 |
|- ( ph -> A e. NN ) |
2 |
|
perfectALTVlem.2 |
|- ( ph -> B e. NN ) |
3 |
|
perfectALTVlem.3 |
|- ( ph -> B e. Odd ) |
4 |
|
perfectALTVlem.4 |
|- ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) |
5 |
|
2nn |
|- 2 e. NN |
6 |
1
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
7 |
|
peano2nn0 |
|- ( A e. NN0 -> ( A + 1 ) e. NN0 ) |
8 |
6 7
|
syl |
|- ( ph -> ( A + 1 ) e. NN0 ) |
9 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( A + 1 ) e. NN0 ) -> ( 2 ^ ( A + 1 ) ) e. NN ) |
10 |
5 8 9
|
sylancr |
|- ( ph -> ( 2 ^ ( A + 1 ) ) e. NN ) |
11 |
|
2re |
|- 2 e. RR |
12 |
11
|
a1i |
|- ( ph -> 2 e. RR ) |
13 |
1
|
peano2nnd |
|- ( ph -> ( A + 1 ) e. NN ) |
14 |
|
1lt2 |
|- 1 < 2 |
15 |
14
|
a1i |
|- ( ph -> 1 < 2 ) |
16 |
|
expgt1 |
|- ( ( 2 e. RR /\ ( A + 1 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( A + 1 ) ) ) |
17 |
12 13 15 16
|
syl3anc |
|- ( ph -> 1 < ( 2 ^ ( A + 1 ) ) ) |
18 |
|
1nn |
|- 1 e. NN |
19 |
|
nnsub |
|- ( ( 1 e. NN /\ ( 2 ^ ( A + 1 ) ) e. NN ) -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) ) |
20 |
18 10 19
|
sylancr |
|- ( ph -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) ) |
21 |
17 20
|
mpbid |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) |
22 |
10
|
nnzd |
|- ( ph -> ( 2 ^ ( A + 1 ) ) e. ZZ ) |
23 |
|
peano2zm |
|- ( ( 2 ^ ( A + 1 ) ) e. ZZ -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) |
24 |
22 23
|
syl |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) |
25 |
|
1nn0 |
|- 1 e. NN0 |
26 |
|
sgmnncl |
|- ( ( 1 e. NN0 /\ B e. NN ) -> ( 1 sigma B ) e. NN ) |
27 |
25 2 26
|
sylancr |
|- ( ph -> ( 1 sigma B ) e. NN ) |
28 |
27
|
nnzd |
|- ( ph -> ( 1 sigma B ) e. ZZ ) |
29 |
|
dvdsmul1 |
|- ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 1 sigma B ) e. ZZ ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
30 |
24 28 29
|
syl2anc |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
31 |
|
2cn |
|- 2 e. CC |
32 |
|
expp1 |
|- ( ( 2 e. CC /\ A e. NN0 ) -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) |
33 |
31 6 32
|
sylancr |
|- ( ph -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) |
34 |
|
nnexpcl |
|- ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) |
35 |
5 6 34
|
sylancr |
|- ( ph -> ( 2 ^ A ) e. NN ) |
36 |
35
|
nncnd |
|- ( ph -> ( 2 ^ A ) e. CC ) |
37 |
|
mulcom |
|- ( ( ( 2 ^ A ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) |
38 |
36 31 37
|
sylancl |
|- ( ph -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) |
39 |
33 38
|
eqtrd |
|- ( ph -> ( 2 ^ ( A + 1 ) ) = ( 2 x. ( 2 ^ A ) ) ) |
40 |
39
|
oveq1d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( 2 x. ( 2 ^ A ) ) x. B ) ) |
41 |
31
|
a1i |
|- ( ph -> 2 e. CC ) |
42 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
43 |
41 36 42
|
mulassd |
|- ( ph -> ( ( 2 x. ( 2 ^ A ) ) x. B ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) |
44 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
45 |
|
isodd7 |
|- ( B e. Odd <-> ( B e. ZZ /\ ( 2 gcd B ) = 1 ) ) |
46 |
45
|
simprbi |
|- ( B e. Odd -> ( 2 gcd B ) = 1 ) |
47 |
3 46
|
syl |
|- ( ph -> ( 2 gcd B ) = 1 ) |
48 |
|
2z |
|- 2 e. ZZ |
49 |
48
|
a1i |
|- ( ph -> 2 e. ZZ ) |
50 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
51 |
|
rpexp1i |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ A e. NN0 ) -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) |
52 |
49 50 6 51
|
syl3anc |
|- ( ph -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) |
53 |
47 52
|
mpd |
|- ( ph -> ( ( 2 ^ A ) gcd B ) = 1 ) |
54 |
|
sgmmul |
|- ( ( 1 e. CC /\ ( ( 2 ^ A ) e. NN /\ B e. NN /\ ( ( 2 ^ A ) gcd B ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) |
55 |
44 35 2 53 54
|
syl13anc |
|- ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) |
56 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
57 |
|
pncan1 |
|- ( A e. CC -> ( ( A + 1 ) - 1 ) = A ) |
58 |
56 57
|
syl |
|- ( ph -> ( ( A + 1 ) - 1 ) = A ) |
59 |
58
|
oveq2d |
|- ( ph -> ( 2 ^ ( ( A + 1 ) - 1 ) ) = ( 2 ^ A ) ) |
60 |
59
|
oveq2d |
|- ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( 1 sigma ( 2 ^ A ) ) ) |
61 |
|
1sgm2ppw |
|- ( ( A + 1 ) e. NN -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
62 |
13 61
|
syl |
|- ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
63 |
60 62
|
eqtr3d |
|- ( ph -> ( 1 sigma ( 2 ^ A ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
64 |
63
|
oveq1d |
|- ( ph -> ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
65 |
55 4 64
|
3eqtr3d |
|- ( ph -> ( 2 x. ( ( 2 ^ A ) x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
66 |
40 43 65
|
3eqtrd |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
67 |
30 66
|
breqtrrd |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) ) |
68 |
24 22
|
gcdcomd |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
69 |
|
nnpw2evenALTV |
|- ( ( A + 1 ) e. NN -> ( 2 ^ ( A + 1 ) ) e. Even ) |
70 |
13 69
|
syl |
|- ( ph -> ( 2 ^ ( A + 1 ) ) e. Even ) |
71 |
|
evenm1odd |
|- ( ( 2 ^ ( A + 1 ) ) e. Even -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd ) |
72 |
70 71
|
syl |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd ) |
73 |
|
isodd7 |
|- ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd <-> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) |
74 |
73
|
simprbi |
|- ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd -> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) |
75 |
72 74
|
syl |
|- ( ph -> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) |
76 |
|
rpexp1i |
|- ( ( 2 e. ZZ /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( A + 1 ) e. NN0 ) -> ( ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) |
77 |
49 24 8 76
|
syl3anc |
|- ( ph -> ( ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) |
78 |
75 77
|
mpd |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) |
79 |
68 78
|
eqtrd |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) |
80 |
|
coprmdvds |
|- ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 2 ^ ( A + 1 ) ) e. ZZ /\ B e. ZZ ) -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) ) |
81 |
24 22 50 80
|
syl3anc |
|- ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) ) |
82 |
67 79 81
|
mp2and |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) |
83 |
|
nndivdvds |
|- ( ( B e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) |
84 |
2 21 83
|
syl2anc |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) |
85 |
82 84
|
mpbid |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) |
86 |
10 21 85
|
3jca |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) |