| Step | Hyp | Ref | Expression | 
						
							| 1 |  | perfectALTVlem.1 |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | perfectALTVlem.2 |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | perfectALTVlem.3 |  |-  ( ph -> B e. Odd ) | 
						
							| 4 |  | perfectALTVlem.4 |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 5 |  | 2nn |  |-  2 e. NN | 
						
							| 6 | 1 | nnnn0d |  |-  ( ph -> A e. NN0 ) | 
						
							| 7 |  | peano2nn0 |  |-  ( A e. NN0 -> ( A + 1 ) e. NN0 ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( A + 1 ) e. NN0 ) | 
						
							| 9 |  | nnexpcl |  |-  ( ( 2 e. NN /\ ( A + 1 ) e. NN0 ) -> ( 2 ^ ( A + 1 ) ) e. NN ) | 
						
							| 10 | 5 8 9 | sylancr |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. NN ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 | 11 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 13 | 1 | peano2nnd |  |-  ( ph -> ( A + 1 ) e. NN ) | 
						
							| 14 |  | 1lt2 |  |-  1 < 2 | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 16 |  | expgt1 |  |-  ( ( 2 e. RR /\ ( A + 1 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 17 | 12 13 15 16 | syl3anc |  |-  ( ph -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 18 |  | 1nn |  |-  1 e. NN | 
						
							| 19 |  | nnsub |  |-  ( ( 1 e. NN /\ ( 2 ^ ( A + 1 ) ) e. NN ) -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) ) | 
						
							| 20 | 18 10 19 | sylancr |  |-  ( ph -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) ) | 
						
							| 21 | 17 20 | mpbid |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) | 
						
							| 22 | 10 | nnzd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. ZZ ) | 
						
							| 23 |  | peano2zm |  |-  ( ( 2 ^ ( A + 1 ) ) e. ZZ -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) | 
						
							| 25 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 26 |  | sgmnncl |  |-  ( ( 1 e. NN0 /\ B e. NN ) -> ( 1 sigma B ) e. NN ) | 
						
							| 27 | 25 2 26 | sylancr |  |-  ( ph -> ( 1 sigma B ) e. NN ) | 
						
							| 28 | 27 | nnzd |  |-  ( ph -> ( 1 sigma B ) e. ZZ ) | 
						
							| 29 |  | dvdsmul1 |  |-  ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 1 sigma B ) e. ZZ ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 30 | 24 28 29 | syl2anc |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 31 |  | 2cn |  |-  2 e. CC | 
						
							| 32 |  | expp1 |  |-  ( ( 2 e. CC /\ A e. NN0 ) -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 33 | 31 6 32 | sylancr |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 34 |  | nnexpcl |  |-  ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) | 
						
							| 35 | 5 6 34 | sylancr |  |-  ( ph -> ( 2 ^ A ) e. NN ) | 
						
							| 36 | 35 | nncnd |  |-  ( ph -> ( 2 ^ A ) e. CC ) | 
						
							| 37 |  | mulcom |  |-  ( ( ( 2 ^ A ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 38 | 36 31 37 | sylancl |  |-  ( ph -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 39 | 33 38 | eqtrd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( 2 x. ( 2 ^ A ) ) x. B ) ) | 
						
							| 41 | 31 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 42 | 2 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 43 | 41 36 42 | mulassd |  |-  ( ph -> ( ( 2 x. ( 2 ^ A ) ) x. B ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 44 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 45 |  | isodd7 |  |-  ( B e. Odd <-> ( B e. ZZ /\ ( 2 gcd B ) = 1 ) ) | 
						
							| 46 | 45 | simprbi |  |-  ( B e. Odd -> ( 2 gcd B ) = 1 ) | 
						
							| 47 | 3 46 | syl |  |-  ( ph -> ( 2 gcd B ) = 1 ) | 
						
							| 48 |  | 2z |  |-  2 e. ZZ | 
						
							| 49 | 48 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 50 | 2 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 51 |  | rpexp1i |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ A e. NN0 ) -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 52 | 49 50 6 51 | syl3anc |  |-  ( ph -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 53 | 47 52 | mpd |  |-  ( ph -> ( ( 2 ^ A ) gcd B ) = 1 ) | 
						
							| 54 |  | sgmmul |  |-  ( ( 1 e. CC /\ ( ( 2 ^ A ) e. NN /\ B e. NN /\ ( ( 2 ^ A ) gcd B ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 55 | 44 35 2 53 54 | syl13anc |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 56 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 57 |  | pncan1 |  |-  ( A e. CC -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 58 | 56 57 | syl |  |-  ( ph -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 59 | 58 | oveq2d |  |-  ( ph -> ( 2 ^ ( ( A + 1 ) - 1 ) ) = ( 2 ^ A ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( 1 sigma ( 2 ^ A ) ) ) | 
						
							| 61 |  | 1sgm2ppw |  |-  ( ( A + 1 ) e. NN -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 62 | 13 61 | syl |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 63 | 60 62 | eqtr3d |  |-  ( ph -> ( 1 sigma ( 2 ^ A ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( ph -> ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 65 | 55 4 64 | 3eqtr3d |  |-  ( ph -> ( 2 x. ( ( 2 ^ A ) x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 66 | 40 43 65 | 3eqtrd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 67 | 30 66 | breqtrrd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) ) | 
						
							| 68 | 24 22 | gcdcomd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 69 |  | nnpw2evenALTV |  |-  ( ( A + 1 ) e. NN -> ( 2 ^ ( A + 1 ) ) e. Even ) | 
						
							| 70 |  | evenm1odd |  |-  ( ( 2 ^ ( A + 1 ) ) e. Even -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd ) | 
						
							| 71 |  | isodd7 |  |-  ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd <-> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 72 | 71 | simprbi |  |-  ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. Odd -> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) | 
						
							| 73 | 13 69 70 72 | 4syl |  |-  ( ph -> ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) | 
						
							| 74 |  | rpexp1i |  |-  ( ( 2 e. ZZ /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( A + 1 ) e. NN0 ) -> ( ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 75 | 49 24 8 74 | syl3anc |  |-  ( ph -> ( ( 2 gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) ) | 
						
							| 76 | 73 75 | mpd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) gcd ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 ) | 
						
							| 77 | 68 76 | eqtrd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) | 
						
							| 78 |  | coprmdvds |  |-  ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( 2 ^ ( A + 1 ) ) e. ZZ /\ B e. ZZ ) -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) ) | 
						
							| 79 | 24 22 50 78 | syl3anc |  |-  ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || ( ( 2 ^ ( A + 1 ) ) x. B ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) gcd ( 2 ^ ( A + 1 ) ) ) = 1 ) -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) ) | 
						
							| 80 | 67 77 79 | mp2and |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) || B ) | 
						
							| 81 |  | nndivdvds |  |-  ( ( B e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) | 
						
							| 82 | 2 21 81 | syl2anc |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) | 
						
							| 83 | 80 82 | mpbid |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) | 
						
							| 84 | 10 21 83 | 3jca |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) |