| Step |
Hyp |
Ref |
Expression |
| 1 |
|
perfectALTVlem.1 |
|- ( ph -> A e. NN ) |
| 2 |
|
perfectALTVlem.2 |
|- ( ph -> B e. NN ) |
| 3 |
|
perfectALTVlem.3 |
|- ( ph -> B e. Odd ) |
| 4 |
|
perfectALTVlem.4 |
|- ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) |
| 5 |
|
1re |
|- 1 e. RR |
| 6 |
5
|
a1i |
|- ( ph -> 1 e. RR ) |
| 7 |
1 2 3 4
|
perfectALTVlem1 |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) |
| 8 |
7
|
simp3d |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) |
| 9 |
8
|
nnred |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. RR ) |
| 10 |
2
|
nnred |
|- ( ph -> B e. RR ) |
| 11 |
8
|
nnge1d |
|- ( ph -> 1 <_ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 12 |
|
2cn |
|- 2 e. CC |
| 13 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
| 14 |
12 13
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
| 15 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 16 |
14 15
|
eqtri |
|- ( 2 ^ 1 ) = ( 1 + 1 ) |
| 17 |
|
2re |
|- 2 e. RR |
| 18 |
17
|
a1i |
|- ( ph -> 2 e. RR ) |
| 19 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 20 |
1
|
peano2nnd |
|- ( ph -> ( A + 1 ) e. NN ) |
| 21 |
20
|
nnzd |
|- ( ph -> ( A + 1 ) e. ZZ ) |
| 22 |
|
1lt2 |
|- 1 < 2 |
| 23 |
22
|
a1i |
|- ( ph -> 1 < 2 ) |
| 24 |
1
|
nnrpd |
|- ( ph -> A e. RR+ ) |
| 25 |
|
ltaddrp |
|- ( ( 1 e. RR /\ A e. RR+ ) -> 1 < ( 1 + A ) ) |
| 26 |
5 24 25
|
sylancr |
|- ( ph -> 1 < ( 1 + A ) ) |
| 27 |
|
ax-1cn |
|- 1 e. CC |
| 28 |
1
|
nncnd |
|- ( ph -> A e. CC ) |
| 29 |
|
addcom |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) = ( A + 1 ) ) |
| 30 |
27 28 29
|
sylancr |
|- ( ph -> ( 1 + A ) = ( A + 1 ) ) |
| 31 |
26 30
|
breqtrd |
|- ( ph -> 1 < ( A + 1 ) ) |
| 32 |
|
ltexp2a |
|- ( ( ( 2 e. RR /\ 1 e. ZZ /\ ( A + 1 ) e. ZZ ) /\ ( 1 < 2 /\ 1 < ( A + 1 ) ) ) -> ( 2 ^ 1 ) < ( 2 ^ ( A + 1 ) ) ) |
| 33 |
18 19 21 23 31 32
|
syl32anc |
|- ( ph -> ( 2 ^ 1 ) < ( 2 ^ ( A + 1 ) ) ) |
| 34 |
16 33
|
eqbrtrrid |
|- ( ph -> ( 1 + 1 ) < ( 2 ^ ( A + 1 ) ) ) |
| 35 |
7
|
simp1d |
|- ( ph -> ( 2 ^ ( A + 1 ) ) e. NN ) |
| 36 |
35
|
nnred |
|- ( ph -> ( 2 ^ ( A + 1 ) ) e. RR ) |
| 37 |
6 6 36
|
ltaddsubd |
|- ( ph -> ( ( 1 + 1 ) < ( 2 ^ ( A + 1 ) ) <-> 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 38 |
34 37
|
mpbid |
|- ( ph -> 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
| 39 |
|
1rp |
|- 1 e. RR+ |
| 40 |
39
|
a1i |
|- ( ph -> 1 e. RR+ ) |
| 41 |
|
peano2rem |
|- ( ( 2 ^ ( A + 1 ) ) e. RR -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR ) |
| 42 |
36 41
|
syl |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR ) |
| 43 |
|
expgt1 |
|- ( ( 2 e. RR /\ ( A + 1 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( A + 1 ) ) ) |
| 44 |
18 20 23 43
|
syl3anc |
|- ( ph -> 1 < ( 2 ^ ( A + 1 ) ) ) |
| 45 |
|
posdif |
|- ( ( 1 e. RR /\ ( 2 ^ ( A + 1 ) ) e. RR ) -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 46 |
5 36 45
|
sylancr |
|- ( ph -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 47 |
44 46
|
mpbid |
|- ( ph -> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
| 48 |
42 47
|
jca |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR /\ 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 49 |
|
elrp |
|- ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR+ <-> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR /\ 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 50 |
48 49
|
sylibr |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR+ ) |
| 51 |
|
nnrp |
|- ( B e. NN -> B e. RR+ ) |
| 52 |
2 51
|
syl |
|- ( ph -> B e. RR+ ) |
| 53 |
40 50 52
|
ltdiv2d |
|- ( ph -> ( 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) ) |
| 54 |
38 53
|
mpbid |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) |
| 55 |
2
|
nncnd |
|- ( ph -> B e. CC ) |
| 56 |
55
|
div1d |
|- ( ph -> ( B / 1 ) = B ) |
| 57 |
54 56
|
breqtrd |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < B ) |
| 58 |
6 9 10 11 57
|
lelttrd |
|- ( ph -> 1 < B ) |
| 59 |
|
eluz2b2 |
|- ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) ) |
| 60 |
2 58 59
|
sylanbrc |
|- ( ph -> B e. ( ZZ>= ` 2 ) ) |
| 61 |
|
fzfid |
|- ( ph -> ( 1 ... B ) e. Fin ) |
| 62 |
|
dvdsssfz1 |
|- ( B e. NN -> { x e. NN | x || B } C_ ( 1 ... B ) ) |
| 63 |
2 62
|
syl |
|- ( ph -> { x e. NN | x || B } C_ ( 1 ... B ) ) |
| 64 |
|
ssfi |
|- ( ( ( 1 ... B ) e. Fin /\ { x e. NN | x || B } C_ ( 1 ... B ) ) -> { x e. NN | x || B } e. Fin ) |
| 65 |
61 63 64
|
syl2anc |
|- ( ph -> { x e. NN | x || B } e. Fin ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { x e. NN | x || B } e. Fin ) |
| 67 |
|
ssrab2 |
|- { x e. NN | x || B } C_ NN |
| 68 |
67
|
a1i |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { x e. NN | x || B } C_ NN ) |
| 69 |
68
|
sselda |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. NN ) |
| 70 |
69
|
nnred |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. RR ) |
| 71 |
69
|
nnnn0d |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. NN0 ) |
| 72 |
71
|
nn0ge0d |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> 0 <_ k ) |
| 73 |
|
df-tp |
|- { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) |
| 74 |
|
prssi |
|- ( ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN /\ B e. NN ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) |
| 75 |
8 2 74
|
syl2anc |
|- ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) |
| 76 |
75
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) |
| 77 |
|
simplrl |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. NN ) |
| 78 |
77
|
snssd |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { n } C_ NN ) |
| 79 |
76 78
|
unssd |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) C_ NN ) |
| 80 |
73 79
|
eqsstrid |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } C_ NN ) |
| 81 |
|
eltpi |
|- ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = n ) ) |
| 82 |
7
|
simp2d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) |
| 83 |
82
|
nnzd |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) |
| 84 |
8
|
nnzd |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. ZZ ) |
| 85 |
|
dvdsmul2 |
|- ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. ZZ ) -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 86 |
83 84 85
|
syl2anc |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 87 |
82
|
nncnd |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. CC ) |
| 88 |
82
|
nnne0d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) =/= 0 ) |
| 89 |
55 87 88
|
divcan2d |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = B ) |
| 90 |
86 89
|
breqtrd |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || B ) |
| 91 |
|
breq1 |
|- ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( x || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || B ) ) |
| 92 |
90 91
|
syl5ibrcom |
|- ( ph -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> x || B ) ) |
| 93 |
92
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> x || B ) ) |
| 94 |
2
|
nnzd |
|- ( ph -> B e. ZZ ) |
| 95 |
|
iddvds |
|- ( B e. ZZ -> B || B ) |
| 96 |
94 95
|
syl |
|- ( ph -> B || B ) |
| 97 |
|
breq1 |
|- ( x = B -> ( x || B <-> B || B ) ) |
| 98 |
96 97
|
syl5ibrcom |
|- ( ph -> ( x = B -> x || B ) ) |
| 99 |
98
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = B -> x || B ) ) |
| 100 |
|
simplrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n || B ) |
| 101 |
|
breq1 |
|- ( x = n -> ( x || B <-> n || B ) ) |
| 102 |
100 101
|
syl5ibrcom |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = n -> x || B ) ) |
| 103 |
93 99 102
|
3jaod |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = n ) -> x || B ) ) |
| 104 |
81 103
|
syl5 |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } -> x || B ) ) |
| 105 |
104
|
imp |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> x || B ) |
| 106 |
80 105
|
ssrabdv |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } C_ { x e. NN | x || B } ) |
| 107 |
66 70 72 106
|
fsumless |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k <_ sum_ k e. { x e. NN | x || B } k ) |
| 108 |
|
simpr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) |
| 109 |
|
disjsn |
|- ( ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { n } ) = (/) <-> -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) |
| 110 |
108 109
|
sylibr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { n } ) = (/) ) |
| 111 |
73
|
a1i |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) ) |
| 112 |
|
tpfi |
|- { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } e. Fin |
| 113 |
112
|
a1i |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } e. Fin ) |
| 114 |
80
|
sselda |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> k e. NN ) |
| 115 |
114
|
nncnd |
|- ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> k e. CC ) |
| 116 |
110 111 113 115
|
fsumsplit |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { n } k ) ) |
| 117 |
8
|
nncnd |
|- ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. CC ) |
| 118 |
|
id |
|- ( k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 119 |
118
|
sumsn |
|- ( ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. CC ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 120 |
8 117 119
|
syl2anc |
|- ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 121 |
|
id |
|- ( k = B -> k = B ) |
| 122 |
121
|
sumsn |
|- ( ( B e. NN /\ B e. CC ) -> sum_ k e. { B } k = B ) |
| 123 |
2 55 122
|
syl2anc |
|- ( ph -> sum_ k e. { B } k = B ) |
| 124 |
120 123
|
oveq12d |
|- ( ph -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k + sum_ k e. { B } k ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) |
| 125 |
|
incom |
|- ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } i^i { B } ) |
| 126 |
9 57
|
gtned |
|- ( ph -> B =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 127 |
|
disjsn2 |
|- ( B =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = (/) ) |
| 128 |
126 127
|
syl |
|- ( ph -> ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = (/) ) |
| 129 |
125 128
|
eqtr3id |
|- ( ph -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } i^i { B } ) = (/) ) |
| 130 |
|
df-pr |
|- { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } u. { B } ) |
| 131 |
130
|
a1i |
|- ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } u. { B } ) ) |
| 132 |
|
prfi |
|- { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } e. Fin |
| 133 |
132
|
a1i |
|- ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } e. Fin ) |
| 134 |
75
|
sselda |
|- ( ( ph /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> k e. NN ) |
| 135 |
134
|
nncnd |
|- ( ( ph /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> k e. CC ) |
| 136 |
129 131 133 135
|
fsumsplit |
|- ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k + sum_ k e. { B } k ) ) |
| 137 |
87 55
|
mulcld |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) e. CC ) |
| 138 |
55 137 87 88
|
divdird |
|- ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 139 |
35
|
nncnd |
|- ( ph -> ( 2 ^ ( A + 1 ) ) e. CC ) |
| 140 |
27
|
a1i |
|- ( ph -> 1 e. CC ) |
| 141 |
139 140 55
|
subdird |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - ( 1 x. B ) ) ) |
| 142 |
55
|
mullidd |
|- ( ph -> ( 1 x. B ) = B ) |
| 143 |
142
|
oveq2d |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) - ( 1 x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) |
| 144 |
141 143
|
eqtrd |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) |
| 145 |
144
|
oveq2d |
|- ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) = ( B + ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) ) |
| 146 |
139 55
|
mulcld |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) e. CC ) |
| 147 |
55 146
|
pncan3d |
|- ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) = ( ( 2 ^ ( A + 1 ) ) x. B ) ) |
| 148 |
145 147
|
eqtrd |
|- ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) = ( ( 2 ^ ( A + 1 ) ) x. B ) ) |
| 149 |
148
|
oveq1d |
|- ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 150 |
139 55 87 88
|
divassd |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 151 |
149 150
|
eqtrd |
|- ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 152 |
55 87 88
|
divcan3d |
|- ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = B ) |
| 153 |
152
|
oveq2d |
|- ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) |
| 154 |
138 151 153
|
3eqtr3d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) |
| 155 |
124 136 154
|
3eqtr4d |
|- ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 156 |
155
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 157 |
77
|
nncnd |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. CC ) |
| 158 |
|
id |
|- ( k = n -> k = n ) |
| 159 |
158
|
sumsn |
|- ( ( n e. CC /\ n e. CC ) -> sum_ k e. { n } k = n ) |
| 160 |
157 157 159
|
syl2anc |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { n } k = n ) |
| 161 |
156 160
|
oveq12d |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { n } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) |
| 162 |
116 161
|
eqtrd |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) |
| 163 |
1
|
nnnn0d |
|- ( ph -> A e. NN0 ) |
| 164 |
|
expp1 |
|- ( ( 2 e. CC /\ A e. NN0 ) -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) |
| 165 |
12 163 164
|
sylancr |
|- ( ph -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) |
| 166 |
|
2nn |
|- 2 e. NN |
| 167 |
|
nnexpcl |
|- ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) |
| 168 |
166 163 167
|
sylancr |
|- ( ph -> ( 2 ^ A ) e. NN ) |
| 169 |
168
|
nncnd |
|- ( ph -> ( 2 ^ A ) e. CC ) |
| 170 |
|
mulcom |
|- ( ( ( 2 ^ A ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) |
| 171 |
169 12 170
|
sylancl |
|- ( ph -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) |
| 172 |
165 171
|
eqtrd |
|- ( ph -> ( 2 ^ ( A + 1 ) ) = ( 2 x. ( 2 ^ A ) ) ) |
| 173 |
172
|
oveq1d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( 2 x. ( 2 ^ A ) ) x. B ) ) |
| 174 |
12
|
a1i |
|- ( ph -> 2 e. CC ) |
| 175 |
174 169 55
|
mulassd |
|- ( ph -> ( ( 2 x. ( 2 ^ A ) ) x. B ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) |
| 176 |
|
isodd7 |
|- ( B e. Odd <-> ( B e. ZZ /\ ( 2 gcd B ) = 1 ) ) |
| 177 |
|
simpr |
|- ( ( B e. ZZ /\ ( 2 gcd B ) = 1 ) -> ( 2 gcd B ) = 1 ) |
| 178 |
176 177
|
sylbi |
|- ( B e. Odd -> ( 2 gcd B ) = 1 ) |
| 179 |
3 178
|
syl |
|- ( ph -> ( 2 gcd B ) = 1 ) |
| 180 |
|
2z |
|- 2 e. ZZ |
| 181 |
180
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 182 |
|
rpexp1i |
|- ( ( 2 e. ZZ /\ B e. ZZ /\ A e. NN0 ) -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) |
| 183 |
181 94 163 182
|
syl3anc |
|- ( ph -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) |
| 184 |
179 183
|
mpd |
|- ( ph -> ( ( 2 ^ A ) gcd B ) = 1 ) |
| 185 |
|
sgmmul |
|- ( ( 1 e. CC /\ ( ( 2 ^ A ) e. NN /\ B e. NN /\ ( ( 2 ^ A ) gcd B ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) |
| 186 |
140 168 2 184 185
|
syl13anc |
|- ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) |
| 187 |
|
pncan |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) |
| 188 |
28 27 187
|
sylancl |
|- ( ph -> ( ( A + 1 ) - 1 ) = A ) |
| 189 |
188
|
oveq2d |
|- ( ph -> ( 2 ^ ( ( A + 1 ) - 1 ) ) = ( 2 ^ A ) ) |
| 190 |
189
|
oveq2d |
|- ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( 1 sigma ( 2 ^ A ) ) ) |
| 191 |
|
1sgm2ppw |
|- ( ( A + 1 ) e. NN -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
| 192 |
20 191
|
syl |
|- ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
| 193 |
190 192
|
eqtr3d |
|- ( ph -> ( 1 sigma ( 2 ^ A ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
| 194 |
193
|
oveq1d |
|- ( ph -> ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
| 195 |
186 4 194
|
3eqtr3d |
|- ( ph -> ( 2 x. ( ( 2 ^ A ) x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
| 196 |
173 175 195
|
3eqtrd |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) |
| 197 |
196
|
oveq1d |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 198 |
|
1nn0 |
|- 1 e. NN0 |
| 199 |
|
sgmnncl |
|- ( ( 1 e. NN0 /\ B e. NN ) -> ( 1 sigma B ) e. NN ) |
| 200 |
198 2 199
|
sylancr |
|- ( ph -> ( 1 sigma B ) e. NN ) |
| 201 |
200
|
nncnd |
|- ( ph -> ( 1 sigma B ) e. CC ) |
| 202 |
201 87 88
|
divcan3d |
|- ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( 1 sigma B ) ) |
| 203 |
197 150 202
|
3eqtr3d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( 1 sigma B ) ) |
| 204 |
|
sgmval |
|- ( ( 1 e. CC /\ B e. NN ) -> ( 1 sigma B ) = sum_ k e. { x e. NN | x || B } ( k ^c 1 ) ) |
| 205 |
27 2 204
|
sylancr |
|- ( ph -> ( 1 sigma B ) = sum_ k e. { x e. NN | x || B } ( k ^c 1 ) ) |
| 206 |
|
simpr |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. { x e. NN | x || B } ) |
| 207 |
67 206
|
sselid |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. NN ) |
| 208 |
207
|
nncnd |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. CC ) |
| 209 |
208
|
cxp1d |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> ( k ^c 1 ) = k ) |
| 210 |
209
|
sumeq2dv |
|- ( ph -> sum_ k e. { x e. NN | x || B } ( k ^c 1 ) = sum_ k e. { x e. NN | x || B } k ) |
| 211 |
203 205 210
|
3eqtrrd |
|- ( ph -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 212 |
211
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 213 |
107 162 212
|
3brtr3d |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 214 |
36 9
|
remulcld |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR ) |
| 215 |
214
|
ad2antrr |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR ) |
| 216 |
77
|
nnrpd |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. RR+ ) |
| 217 |
215 216
|
ltaddrpd |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) |
| 218 |
77
|
nnred |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. RR ) |
| 219 |
215 218
|
readdcld |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) e. RR ) |
| 220 |
215 219
|
ltnled |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <-> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) |
| 221 |
217 220
|
mpbid |
|- ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 222 |
213 221
|
condan |
|- ( ( ph /\ ( n e. NN /\ n || B ) ) -> n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) |
| 223 |
|
elpri |
|- ( n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) |
| 224 |
222 223
|
syl |
|- ( ( ph /\ ( n e. NN /\ n || B ) ) -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) |
| 225 |
224
|
expr |
|- ( ( ph /\ n e. NN ) -> ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) |
| 226 |
225
|
ralrimiva |
|- ( ph -> A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) |
| 227 |
6 58
|
gtned |
|- ( ph -> B =/= 1 ) |
| 228 |
227
|
necomd |
|- ( ph -> 1 =/= B ) |
| 229 |
|
1nn |
|- 1 e. NN |
| 230 |
229
|
a1i |
|- ( ph -> 1 e. NN ) |
| 231 |
|
1dvds |
|- ( B e. ZZ -> 1 || B ) |
| 232 |
94 231
|
syl |
|- ( ph -> 1 || B ) |
| 233 |
|
breq1 |
|- ( n = 1 -> ( n || B <-> 1 || B ) ) |
| 234 |
|
eqeq1 |
|- ( n = 1 -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) <-> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 235 |
|
eqeq1 |
|- ( n = 1 -> ( n = B <-> 1 = B ) ) |
| 236 |
234 235
|
orbi12d |
|- ( n = 1 -> ( ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) <-> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) |
| 237 |
233 236
|
imbi12d |
|- ( n = 1 -> ( ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) <-> ( 1 || B -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) ) |
| 238 |
237
|
rspcv |
|- ( 1 e. NN -> ( A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) -> ( 1 || B -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) ) |
| 239 |
230 226 232 238
|
syl3c |
|- ( ph -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) |
| 240 |
239
|
ord |
|- ( ph -> ( -. 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 = B ) ) |
| 241 |
240
|
necon1ad |
|- ( ph -> ( 1 =/= B -> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 242 |
228 241
|
mpd |
|- ( ph -> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 243 |
242
|
eqeq2d |
|- ( ph -> ( n = 1 <-> n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 244 |
243
|
orbi1d |
|- ( ph -> ( ( n = 1 \/ n = B ) <-> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) |
| 245 |
244
|
imbi2d |
|- ( ph -> ( ( n || B -> ( n = 1 \/ n = B ) ) <-> ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) ) |
| 246 |
245
|
ralbidv |
|- ( ph -> ( A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) <-> A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) ) |
| 247 |
226 246
|
mpbird |
|- ( ph -> A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) ) |
| 248 |
|
isprm2 |
|- ( B e. Prime <-> ( B e. ( ZZ>= ` 2 ) /\ A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) ) ) |
| 249 |
60 247 248
|
sylanbrc |
|- ( ph -> B e. Prime ) |
| 250 |
214
|
ltp1d |
|- ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) |
| 251 |
|
peano2re |
|- ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) e. RR ) |
| 252 |
214 251
|
syl |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) e. RR ) |
| 253 |
214 252
|
ltnled |
|- ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <-> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) |
| 254 |
250 253
|
mpbid |
|- ( ph -> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 255 |
207
|
nnred |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. RR ) |
| 256 |
207
|
nnnn0d |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. NN0 ) |
| 257 |
256
|
nn0ge0d |
|- ( ( ph /\ k e. { x e. NN | x || B } ) -> 0 <_ k ) |
| 258 |
|
df-tp |
|- { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) |
| 259 |
|
snssi |
|- ( 1 e. NN -> { 1 } C_ NN ) |
| 260 |
229 259
|
mp1i |
|- ( ph -> { 1 } C_ NN ) |
| 261 |
75 260
|
unssd |
|- ( ph -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) C_ NN ) |
| 262 |
258 261
|
eqsstrid |
|- ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ NN ) |
| 263 |
|
eltpi |
|- ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = 1 ) ) |
| 264 |
|
breq1 |
|- ( x = 1 -> ( x || B <-> 1 || B ) ) |
| 265 |
232 264
|
syl5ibrcom |
|- ( ph -> ( x = 1 -> x || B ) ) |
| 266 |
92 98 265
|
3jaod |
|- ( ph -> ( ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = 1 ) -> x || B ) ) |
| 267 |
263 266
|
syl5 |
|- ( ph -> ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } -> x || B ) ) |
| 268 |
267
|
imp |
|- ( ( ph /\ x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> x || B ) |
| 269 |
262 268
|
ssrabdv |
|- ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ { x e. NN | x || B } ) |
| 270 |
65 255 257 269
|
fsumless |
|- ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k <_ sum_ k e. { x e. NN | x || B } k ) |
| 271 |
270
|
adantr |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k <_ sum_ k e. { x e. NN | x || B } k ) |
| 272 |
55 87 88
|
diveq1ad |
|- ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 <-> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 273 |
272
|
necon3bid |
|- ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) =/= 1 <-> B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 274 |
273
|
biimpar |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) =/= 1 ) |
| 275 |
274
|
necomd |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 276 |
228
|
adantr |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 =/= B ) |
| 277 |
275 276
|
nelprd |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> -. 1 e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) |
| 278 |
|
disjsn |
|- ( ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { 1 } ) = (/) <-> -. 1 e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) |
| 279 |
277 278
|
sylibr |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { 1 } ) = (/) ) |
| 280 |
258
|
a1i |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) ) |
| 281 |
|
tpfi |
|- { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } e. Fin |
| 282 |
281
|
a1i |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } e. Fin ) |
| 283 |
262
|
adantr |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ NN ) |
| 284 |
283
|
sselda |
|- ( ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> k e. NN ) |
| 285 |
284
|
nncnd |
|- ( ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> k e. CC ) |
| 286 |
279 280 282 285
|
fsumsplit |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) ) |
| 287 |
|
id |
|- ( k = 1 -> k = 1 ) |
| 288 |
287
|
sumsn |
|- ( ( 1 e. CC /\ 1 e. CC ) -> sum_ k e. { 1 } k = 1 ) |
| 289 |
140 27 288
|
sylancl |
|- ( ph -> sum_ k e. { 1 } k = 1 ) |
| 290 |
155 289
|
oveq12d |
|- ( ph -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) |
| 291 |
290
|
adantr |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) |
| 292 |
286 291
|
eqtrd |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) |
| 293 |
211
|
adantr |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 294 |
271 292 293
|
3brtr3d |
|- ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) |
| 295 |
294
|
ex |
|- ( ph -> ( B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) |
| 296 |
295
|
necon1bd |
|- ( ph -> ( -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) -> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |
| 297 |
254 296
|
mpd |
|- ( ph -> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) |
| 298 |
249 297
|
jca |
|- ( ph -> ( B e. Prime /\ B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |