| Step | Hyp | Ref | Expression | 
						
							| 1 |  | perfectALTVlem.1 |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | perfectALTVlem.2 |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | perfectALTVlem.3 |  |-  ( ph -> B e. Odd ) | 
						
							| 4 |  | perfectALTVlem.4 |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 5 |  | 1re |  |-  1 e. RR | 
						
							| 6 | 5 | a1i |  |-  ( ph -> 1 e. RR ) | 
						
							| 7 | 1 2 3 4 | perfectALTVlem1 |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) | 
						
							| 8 | 7 | simp3d |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) | 
						
							| 9 | 8 | nnred |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. RR ) | 
						
							| 10 | 2 | nnred |  |-  ( ph -> B e. RR ) | 
						
							| 11 | 8 | nnge1d |  |-  ( ph -> 1 <_ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 12 |  | 2cn |  |-  2 e. CC | 
						
							| 13 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 15 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 16 | 14 15 | eqtri |  |-  ( 2 ^ 1 ) = ( 1 + 1 ) | 
						
							| 17 |  | 2re |  |-  2 e. RR | 
						
							| 18 | 17 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 19 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 20 | 1 | peano2nnd |  |-  ( ph -> ( A + 1 ) e. NN ) | 
						
							| 21 | 20 | nnzd |  |-  ( ph -> ( A + 1 ) e. ZZ ) | 
						
							| 22 |  | 1lt2 |  |-  1 < 2 | 
						
							| 23 | 22 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 24 | 1 | nnrpd |  |-  ( ph -> A e. RR+ ) | 
						
							| 25 |  | ltaddrp |  |-  ( ( 1 e. RR /\ A e. RR+ ) -> 1 < ( 1 + A ) ) | 
						
							| 26 | 5 24 25 | sylancr |  |-  ( ph -> 1 < ( 1 + A ) ) | 
						
							| 27 |  | ax-1cn |  |-  1 e. CC | 
						
							| 28 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 29 |  | addcom |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) = ( A + 1 ) ) | 
						
							| 30 | 27 28 29 | sylancr |  |-  ( ph -> ( 1 + A ) = ( A + 1 ) ) | 
						
							| 31 | 26 30 | breqtrd |  |-  ( ph -> 1 < ( A + 1 ) ) | 
						
							| 32 |  | ltexp2a |  |-  ( ( ( 2 e. RR /\ 1 e. ZZ /\ ( A + 1 ) e. ZZ ) /\ ( 1 < 2 /\ 1 < ( A + 1 ) ) ) -> ( 2 ^ 1 ) < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 33 | 18 19 21 23 31 32 | syl32anc |  |-  ( ph -> ( 2 ^ 1 ) < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 34 | 16 33 | eqbrtrrid |  |-  ( ph -> ( 1 + 1 ) < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 35 | 7 | simp1d |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. NN ) | 
						
							| 36 | 35 | nnred |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. RR ) | 
						
							| 37 | 6 6 36 | ltaddsubd |  |-  ( ph -> ( ( 1 + 1 ) < ( 2 ^ ( A + 1 ) ) <-> 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 38 | 34 37 | mpbid |  |-  ( ph -> 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 39 |  | 1rp |  |-  1 e. RR+ | 
						
							| 40 | 39 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 41 |  | peano2rem |  |-  ( ( 2 ^ ( A + 1 ) ) e. RR -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR ) | 
						
							| 42 | 36 41 | syl |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR ) | 
						
							| 43 |  | expgt1 |  |-  ( ( 2 e. RR /\ ( A + 1 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 44 | 18 20 23 43 | syl3anc |  |-  ( ph -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 45 |  | posdif |  |-  ( ( 1 e. RR /\ ( 2 ^ ( A + 1 ) ) e. RR ) -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 46 | 5 36 45 | sylancr |  |-  ( ph -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 47 | 44 46 | mpbid |  |-  ( ph -> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 48 | 42 47 | jca |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR /\ 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 49 |  | elrp |  |-  ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR+ <-> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR /\ 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 50 | 48 49 | sylibr |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR+ ) | 
						
							| 51 |  | nnrp |  |-  ( B e. NN -> B e. RR+ ) | 
						
							| 52 | 2 51 | syl |  |-  ( ph -> B e. RR+ ) | 
						
							| 53 | 40 50 52 | ltdiv2d |  |-  ( ph -> ( 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) ) | 
						
							| 54 | 38 53 | mpbid |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) | 
						
							| 55 | 2 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 56 | 55 | div1d |  |-  ( ph -> ( B / 1 ) = B ) | 
						
							| 57 | 54 56 | breqtrd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < B ) | 
						
							| 58 | 6 9 10 11 57 | lelttrd |  |-  ( ph -> 1 < B ) | 
						
							| 59 |  | eluz2b2 |  |-  ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) ) | 
						
							| 60 | 2 58 59 | sylanbrc |  |-  ( ph -> B e. ( ZZ>= ` 2 ) ) | 
						
							| 61 |  | fzfid |  |-  ( ph -> ( 1 ... B ) e. Fin ) | 
						
							| 62 |  | dvdsssfz1 |  |-  ( B e. NN -> { x e. NN | x || B } C_ ( 1 ... B ) ) | 
						
							| 63 | 2 62 | syl |  |-  ( ph -> { x e. NN | x || B } C_ ( 1 ... B ) ) | 
						
							| 64 |  | ssfi |  |-  ( ( ( 1 ... B ) e. Fin /\ { x e. NN | x || B } C_ ( 1 ... B ) ) -> { x e. NN | x || B } e. Fin ) | 
						
							| 65 | 61 63 64 | syl2anc |  |-  ( ph -> { x e. NN | x || B } e. Fin ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { x e. NN | x || B } e. Fin ) | 
						
							| 67 |  | ssrab2 |  |-  { x e. NN | x || B } C_ NN | 
						
							| 68 | 67 | a1i |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { x e. NN | x || B } C_ NN ) | 
						
							| 69 | 68 | sselda |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. NN ) | 
						
							| 70 | 69 | nnred |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. RR ) | 
						
							| 71 | 69 | nnnn0d |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. NN0 ) | 
						
							| 72 | 71 | nn0ge0d |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> 0 <_ k ) | 
						
							| 73 |  | df-tp |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) | 
						
							| 74 |  | prssi |  |-  ( ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN /\ B e. NN ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) | 
						
							| 75 | 8 2 74 | syl2anc |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) | 
						
							| 76 | 75 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) | 
						
							| 77 |  | simplrl |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. NN ) | 
						
							| 78 | 77 | snssd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { n } C_ NN ) | 
						
							| 79 | 76 78 | unssd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) C_ NN ) | 
						
							| 80 | 73 79 | eqsstrid |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } C_ NN ) | 
						
							| 81 |  | eltpi |  |-  ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = n ) ) | 
						
							| 82 | 7 | simp2d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) | 
						
							| 83 | 82 | nnzd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) | 
						
							| 84 | 8 | nnzd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. ZZ ) | 
						
							| 85 |  | dvdsmul2 |  |-  ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. ZZ ) -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 86 | 83 84 85 | syl2anc |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 87 | 82 | nncnd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. CC ) | 
						
							| 88 | 82 | nnne0d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) =/= 0 ) | 
						
							| 89 | 55 87 88 | divcan2d |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = B ) | 
						
							| 90 | 86 89 | breqtrd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || B ) | 
						
							| 91 |  | breq1 |  |-  ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( x || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || B ) ) | 
						
							| 92 | 90 91 | syl5ibrcom |  |-  ( ph -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> x || B ) ) | 
						
							| 93 | 92 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> x || B ) ) | 
						
							| 94 | 2 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 95 |  | iddvds |  |-  ( B e. ZZ -> B || B ) | 
						
							| 96 | 94 95 | syl |  |-  ( ph -> B || B ) | 
						
							| 97 |  | breq1 |  |-  ( x = B -> ( x || B <-> B || B ) ) | 
						
							| 98 | 96 97 | syl5ibrcom |  |-  ( ph -> ( x = B -> x || B ) ) | 
						
							| 99 | 98 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = B -> x || B ) ) | 
						
							| 100 |  | simplrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n || B ) | 
						
							| 101 |  | breq1 |  |-  ( x = n -> ( x || B <-> n || B ) ) | 
						
							| 102 | 100 101 | syl5ibrcom |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = n -> x || B ) ) | 
						
							| 103 | 93 99 102 | 3jaod |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = n ) -> x || B ) ) | 
						
							| 104 | 81 103 | syl5 |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } -> x || B ) ) | 
						
							| 105 | 104 | imp |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> x || B ) | 
						
							| 106 | 80 105 | ssrabdv |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } C_ { x e. NN | x || B } ) | 
						
							| 107 | 66 70 72 106 | fsumless |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k <_ sum_ k e. { x e. NN | x || B } k ) | 
						
							| 108 |  | simpr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 109 |  | disjsn |  |-  ( ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { n } ) = (/) <-> -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 110 | 108 109 | sylibr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { n } ) = (/) ) | 
						
							| 111 | 73 | a1i |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) ) | 
						
							| 112 |  | tpfi |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } e. Fin | 
						
							| 113 | 112 | a1i |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } e. Fin ) | 
						
							| 114 | 80 | sselda |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> k e. NN ) | 
						
							| 115 | 114 | nncnd |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> k e. CC ) | 
						
							| 116 | 110 111 113 115 | fsumsplit |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { n } k ) ) | 
						
							| 117 | 8 | nncnd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. CC ) | 
						
							| 118 |  | id |  |-  ( k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 119 | 118 | sumsn |  |-  ( ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. CC ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 120 | 8 117 119 | syl2anc |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 121 |  | id |  |-  ( k = B -> k = B ) | 
						
							| 122 | 121 | sumsn |  |-  ( ( B e. NN /\ B e. CC ) -> sum_ k e. { B } k = B ) | 
						
							| 123 | 2 55 122 | syl2anc |  |-  ( ph -> sum_ k e. { B } k = B ) | 
						
							| 124 | 120 123 | oveq12d |  |-  ( ph -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k + sum_ k e. { B } k ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) | 
						
							| 125 |  | incom |  |-  ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } i^i { B } ) | 
						
							| 126 | 9 57 | gtned |  |-  ( ph -> B =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 127 |  | disjsn2 |  |-  ( B =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = (/) ) | 
						
							| 128 | 126 127 | syl |  |-  ( ph -> ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = (/) ) | 
						
							| 129 | 125 128 | eqtr3id |  |-  ( ph -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } i^i { B } ) = (/) ) | 
						
							| 130 |  | df-pr |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } u. { B } ) | 
						
							| 131 | 130 | a1i |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } u. { B } ) ) | 
						
							| 132 |  | prfi |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } e. Fin | 
						
							| 133 | 132 | a1i |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } e. Fin ) | 
						
							| 134 | 75 | sselda |  |-  ( ( ph /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> k e. NN ) | 
						
							| 135 | 134 | nncnd |  |-  ( ( ph /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> k e. CC ) | 
						
							| 136 | 129 131 133 135 | fsumsplit |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k + sum_ k e. { B } k ) ) | 
						
							| 137 | 87 55 | mulcld |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) e. CC ) | 
						
							| 138 | 55 137 87 88 | divdird |  |-  ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 139 | 35 | nncnd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. CC ) | 
						
							| 140 | 27 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 141 | 139 140 55 | subdird |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - ( 1 x. B ) ) ) | 
						
							| 142 | 55 | mullidd |  |-  ( ph -> ( 1 x. B ) = B ) | 
						
							| 143 | 142 | oveq2d |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) - ( 1 x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) | 
						
							| 144 | 141 143 | eqtrd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) | 
						
							| 145 | 144 | oveq2d |  |-  ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) = ( B + ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) ) | 
						
							| 146 | 139 55 | mulcld |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) e. CC ) | 
						
							| 147 | 55 146 | pncan3d |  |-  ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) = ( ( 2 ^ ( A + 1 ) ) x. B ) ) | 
						
							| 148 | 145 147 | eqtrd |  |-  ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) = ( ( 2 ^ ( A + 1 ) ) x. B ) ) | 
						
							| 149 | 148 | oveq1d |  |-  ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 150 | 139 55 87 88 | divassd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 151 | 149 150 | eqtrd |  |-  ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 152 | 55 87 88 | divcan3d |  |-  ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = B ) | 
						
							| 153 | 152 | oveq2d |  |-  ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) | 
						
							| 154 | 138 151 153 | 3eqtr3d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) | 
						
							| 155 | 124 136 154 | 3eqtr4d |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 156 | 155 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 157 | 77 | nncnd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. CC ) | 
						
							| 158 |  | id |  |-  ( k = n -> k = n ) | 
						
							| 159 | 158 | sumsn |  |-  ( ( n e. CC /\ n e. CC ) -> sum_ k e. { n } k = n ) | 
						
							| 160 | 157 157 159 | syl2anc |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { n } k = n ) | 
						
							| 161 | 156 160 | oveq12d |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { n } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) | 
						
							| 162 | 116 161 | eqtrd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) | 
						
							| 163 | 1 | nnnn0d |  |-  ( ph -> A e. NN0 ) | 
						
							| 164 |  | expp1 |  |-  ( ( 2 e. CC /\ A e. NN0 ) -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 165 | 12 163 164 | sylancr |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 166 |  | 2nn |  |-  2 e. NN | 
						
							| 167 |  | nnexpcl |  |-  ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) | 
						
							| 168 | 166 163 167 | sylancr |  |-  ( ph -> ( 2 ^ A ) e. NN ) | 
						
							| 169 | 168 | nncnd |  |-  ( ph -> ( 2 ^ A ) e. CC ) | 
						
							| 170 |  | mulcom |  |-  ( ( ( 2 ^ A ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 171 | 169 12 170 | sylancl |  |-  ( ph -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 172 | 165 171 | eqtrd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 173 | 172 | oveq1d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( 2 x. ( 2 ^ A ) ) x. B ) ) | 
						
							| 174 | 12 | a1i |  |-  ( ph -> 2 e. CC ) | 
						
							| 175 | 174 169 55 | mulassd |  |-  ( ph -> ( ( 2 x. ( 2 ^ A ) ) x. B ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 176 |  | isodd7 |  |-  ( B e. Odd <-> ( B e. ZZ /\ ( 2 gcd B ) = 1 ) ) | 
						
							| 177 |  | simpr |  |-  ( ( B e. ZZ /\ ( 2 gcd B ) = 1 ) -> ( 2 gcd B ) = 1 ) | 
						
							| 178 | 176 177 | sylbi |  |-  ( B e. Odd -> ( 2 gcd B ) = 1 ) | 
						
							| 179 | 3 178 | syl |  |-  ( ph -> ( 2 gcd B ) = 1 ) | 
						
							| 180 |  | 2z |  |-  2 e. ZZ | 
						
							| 181 | 180 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 182 |  | rpexp1i |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ A e. NN0 ) -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 183 | 181 94 163 182 | syl3anc |  |-  ( ph -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 184 | 179 183 | mpd |  |-  ( ph -> ( ( 2 ^ A ) gcd B ) = 1 ) | 
						
							| 185 |  | sgmmul |  |-  ( ( 1 e. CC /\ ( ( 2 ^ A ) e. NN /\ B e. NN /\ ( ( 2 ^ A ) gcd B ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 186 | 140 168 2 184 185 | syl13anc |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 187 |  | pncan |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 188 | 28 27 187 | sylancl |  |-  ( ph -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 189 | 188 | oveq2d |  |-  ( ph -> ( 2 ^ ( ( A + 1 ) - 1 ) ) = ( 2 ^ A ) ) | 
						
							| 190 | 189 | oveq2d |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( 1 sigma ( 2 ^ A ) ) ) | 
						
							| 191 |  | 1sgm2ppw |  |-  ( ( A + 1 ) e. NN -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 192 | 20 191 | syl |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 193 | 190 192 | eqtr3d |  |-  ( ph -> ( 1 sigma ( 2 ^ A ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 194 | 193 | oveq1d |  |-  ( ph -> ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 195 | 186 4 194 | 3eqtr3d |  |-  ( ph -> ( 2 x. ( ( 2 ^ A ) x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 196 | 173 175 195 | 3eqtrd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 197 | 196 | oveq1d |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 198 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 199 |  | sgmnncl |  |-  ( ( 1 e. NN0 /\ B e. NN ) -> ( 1 sigma B ) e. NN ) | 
						
							| 200 | 198 2 199 | sylancr |  |-  ( ph -> ( 1 sigma B ) e. NN ) | 
						
							| 201 | 200 | nncnd |  |-  ( ph -> ( 1 sigma B ) e. CC ) | 
						
							| 202 | 201 87 88 | divcan3d |  |-  ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( 1 sigma B ) ) | 
						
							| 203 | 197 150 202 | 3eqtr3d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( 1 sigma B ) ) | 
						
							| 204 |  | sgmval |  |-  ( ( 1 e. CC /\ B e. NN ) -> ( 1 sigma B ) = sum_ k e. { x e. NN | x || B } ( k ^c 1 ) ) | 
						
							| 205 | 27 2 204 | sylancr |  |-  ( ph -> ( 1 sigma B ) = sum_ k e. { x e. NN | x || B } ( k ^c 1 ) ) | 
						
							| 206 |  | simpr |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. { x e. NN | x || B } ) | 
						
							| 207 | 67 206 | sselid |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. NN ) | 
						
							| 208 | 207 | nncnd |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. CC ) | 
						
							| 209 | 208 | cxp1d |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> ( k ^c 1 ) = k ) | 
						
							| 210 | 209 | sumeq2dv |  |-  ( ph -> sum_ k e. { x e. NN | x || B } ( k ^c 1 ) = sum_ k e. { x e. NN | x || B } k ) | 
						
							| 211 | 203 205 210 | 3eqtrrd |  |-  ( ph -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 212 | 211 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 213 | 107 162 212 | 3brtr3d |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 214 | 36 9 | remulcld |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR ) | 
						
							| 215 | 214 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR ) | 
						
							| 216 | 77 | nnrpd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. RR+ ) | 
						
							| 217 | 215 216 | ltaddrpd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) | 
						
							| 218 | 77 | nnred |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. RR ) | 
						
							| 219 | 215 218 | readdcld |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) e. RR ) | 
						
							| 220 | 215 219 | ltnled |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <-> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 221 | 217 220 | mpbid |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 222 | 213 221 | condan |  |-  ( ( ph /\ ( n e. NN /\ n || B ) ) -> n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 223 |  | elpri |  |-  ( n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) | 
						
							| 224 | 222 223 | syl |  |-  ( ( ph /\ ( n e. NN /\ n || B ) ) -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) | 
						
							| 225 | 224 | expr |  |-  ( ( ph /\ n e. NN ) -> ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) | 
						
							| 226 | 225 | ralrimiva |  |-  ( ph -> A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) | 
						
							| 227 | 6 58 | gtned |  |-  ( ph -> B =/= 1 ) | 
						
							| 228 | 227 | necomd |  |-  ( ph -> 1 =/= B ) | 
						
							| 229 |  | 1nn |  |-  1 e. NN | 
						
							| 230 | 229 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 231 |  | 1dvds |  |-  ( B e. ZZ -> 1 || B ) | 
						
							| 232 | 94 231 | syl |  |-  ( ph -> 1 || B ) | 
						
							| 233 |  | breq1 |  |-  ( n = 1 -> ( n || B <-> 1 || B ) ) | 
						
							| 234 |  | eqeq1 |  |-  ( n = 1 -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) <-> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 235 |  | eqeq1 |  |-  ( n = 1 -> ( n = B <-> 1 = B ) ) | 
						
							| 236 | 234 235 | orbi12d |  |-  ( n = 1 -> ( ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) <-> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) | 
						
							| 237 | 233 236 | imbi12d |  |-  ( n = 1 -> ( ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) <-> ( 1 || B -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) ) | 
						
							| 238 | 237 | rspcv |  |-  ( 1 e. NN -> ( A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) -> ( 1 || B -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) ) | 
						
							| 239 | 230 226 232 238 | syl3c |  |-  ( ph -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) | 
						
							| 240 | 239 | ord |  |-  ( ph -> ( -. 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 = B ) ) | 
						
							| 241 | 240 | necon1ad |  |-  ( ph -> ( 1 =/= B -> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 242 | 228 241 | mpd |  |-  ( ph -> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 243 | 242 | eqeq2d |  |-  ( ph -> ( n = 1 <-> n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 244 | 243 | orbi1d |  |-  ( ph -> ( ( n = 1 \/ n = B ) <-> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) | 
						
							| 245 | 244 | imbi2d |  |-  ( ph -> ( ( n || B -> ( n = 1 \/ n = B ) ) <-> ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) ) | 
						
							| 246 | 245 | ralbidv |  |-  ( ph -> ( A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) <-> A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) ) | 
						
							| 247 | 226 246 | mpbird |  |-  ( ph -> A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) ) | 
						
							| 248 |  | isprm2 |  |-  ( B e. Prime <-> ( B e. ( ZZ>= ` 2 ) /\ A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) ) ) | 
						
							| 249 | 60 247 248 | sylanbrc |  |-  ( ph -> B e. Prime ) | 
						
							| 250 | 214 | ltp1d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 251 |  | peano2re |  |-  ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) e. RR ) | 
						
							| 252 | 214 251 | syl |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) e. RR ) | 
						
							| 253 | 214 252 | ltnled |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <-> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 254 | 250 253 | mpbid |  |-  ( ph -> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 255 | 207 | nnred |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. RR ) | 
						
							| 256 | 207 | nnnn0d |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. NN0 ) | 
						
							| 257 | 256 | nn0ge0d |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> 0 <_ k ) | 
						
							| 258 |  | df-tp |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) | 
						
							| 259 |  | snssi |  |-  ( 1 e. NN -> { 1 } C_ NN ) | 
						
							| 260 | 229 259 | mp1i |  |-  ( ph -> { 1 } C_ NN ) | 
						
							| 261 | 75 260 | unssd |  |-  ( ph -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) C_ NN ) | 
						
							| 262 | 258 261 | eqsstrid |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ NN ) | 
						
							| 263 |  | eltpi |  |-  ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = 1 ) ) | 
						
							| 264 |  | breq1 |  |-  ( x = 1 -> ( x || B <-> 1 || B ) ) | 
						
							| 265 | 232 264 | syl5ibrcom |  |-  ( ph -> ( x = 1 -> x || B ) ) | 
						
							| 266 | 92 98 265 | 3jaod |  |-  ( ph -> ( ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = 1 ) -> x || B ) ) | 
						
							| 267 | 263 266 | syl5 |  |-  ( ph -> ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } -> x || B ) ) | 
						
							| 268 | 267 | imp |  |-  ( ( ph /\ x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> x || B ) | 
						
							| 269 | 262 268 | ssrabdv |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ { x e. NN | x || B } ) | 
						
							| 270 | 65 255 257 269 | fsumless |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k <_ sum_ k e. { x e. NN | x || B } k ) | 
						
							| 271 | 270 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k <_ sum_ k e. { x e. NN | x || B } k ) | 
						
							| 272 | 55 87 88 | diveq1ad |  |-  ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 <-> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 273 | 272 | necon3bid |  |-  ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) =/= 1 <-> B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 274 | 273 | biimpar |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) =/= 1 ) | 
						
							| 275 | 274 | necomd |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 276 | 228 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 =/= B ) | 
						
							| 277 | 275 276 | nelprd |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> -. 1 e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 278 |  | disjsn |  |-  ( ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { 1 } ) = (/) <-> -. 1 e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 279 | 277 278 | sylibr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { 1 } ) = (/) ) | 
						
							| 280 | 258 | a1i |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) ) | 
						
							| 281 |  | tpfi |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } e. Fin | 
						
							| 282 | 281 | a1i |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } e. Fin ) | 
						
							| 283 | 262 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ NN ) | 
						
							| 284 | 283 | sselda |  |-  ( ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> k e. NN ) | 
						
							| 285 | 284 | nncnd |  |-  ( ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> k e. CC ) | 
						
							| 286 | 279 280 282 285 | fsumsplit |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) ) | 
						
							| 287 |  | id |  |-  ( k = 1 -> k = 1 ) | 
						
							| 288 | 287 | sumsn |  |-  ( ( 1 e. CC /\ 1 e. CC ) -> sum_ k e. { 1 } k = 1 ) | 
						
							| 289 | 140 27 288 | sylancl |  |-  ( ph -> sum_ k e. { 1 } k = 1 ) | 
						
							| 290 | 155 289 | oveq12d |  |-  ( ph -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 291 | 290 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 292 | 286 291 | eqtrd |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 293 | 211 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 294 | 271 292 293 | 3brtr3d |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 295 | 294 | ex |  |-  ( ph -> ( B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 296 | 295 | necon1bd |  |-  ( ph -> ( -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) -> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 297 | 254 296 | mpd |  |-  ( ph -> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 298 | 249 297 | jca |  |-  ( ph -> ( B e. Prime /\ B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |