| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2dvdseven |
|- ( N e. Even -> 2 || N ) |
| 2 |
1
|
ad2antlr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> 2 || N ) |
| 3 |
|
2prm |
|- 2 e. Prime |
| 4 |
|
simpll |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> N e. NN ) |
| 5 |
|
pcelnn |
|- ( ( 2 e. Prime /\ N e. NN ) -> ( ( 2 pCnt N ) e. NN <-> 2 || N ) ) |
| 6 |
3 4 5
|
sylancr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 pCnt N ) e. NN <-> 2 || N ) ) |
| 7 |
2 6
|
mpbird |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. NN ) |
| 8 |
7
|
nnzd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. ZZ ) |
| 9 |
8
|
peano2zd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 pCnt N ) + 1 ) e. ZZ ) |
| 10 |
|
pcdvds |
|- ( ( 2 e. Prime /\ N e. NN ) -> ( 2 ^ ( 2 pCnt N ) ) || N ) |
| 11 |
3 4 10
|
sylancr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) || N ) |
| 12 |
|
2nn |
|- 2 e. NN |
| 13 |
7
|
nnnn0d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. NN0 ) |
| 14 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( 2 pCnt N ) e. NN0 ) -> ( 2 ^ ( 2 pCnt N ) ) e. NN ) |
| 15 |
12 13 14
|
sylancr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) e. NN ) |
| 16 |
|
nndivdvds |
|- ( ( N e. NN /\ ( 2 ^ ( 2 pCnt N ) ) e. NN ) -> ( ( 2 ^ ( 2 pCnt N ) ) || N <-> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. NN ) ) |
| 17 |
4 15 16
|
syl2anc |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( 2 pCnt N ) ) || N <-> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. NN ) ) |
| 18 |
11 17
|
mpbid |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. NN ) |
| 19 |
18
|
nnzd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. ZZ ) |
| 20 |
|
pcndvds2 |
|- ( ( 2 e. Prime /\ N e. NN ) -> -. 2 || ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) |
| 21 |
3 4 20
|
sylancr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> -. 2 || ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) |
| 22 |
|
isodd3 |
|- ( ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. Odd <-> ( ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. ZZ /\ -. 2 || ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) |
| 23 |
19 21 22
|
sylanbrc |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. Odd ) |
| 24 |
|
simpr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) |
| 25 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> N e. CC ) |
| 27 |
15
|
nncnd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) e. CC ) |
| 28 |
15
|
nnne0d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) =/= 0 ) |
| 29 |
26 27 28
|
divcan2d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) = N ) |
| 30 |
29
|
oveq2d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 1 sigma ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) = ( 1 sigma N ) ) |
| 31 |
29
|
oveq2d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 x. ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) = ( 2 x. N ) ) |
| 32 |
24 30 31
|
3eqtr4d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 1 sigma ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) = ( 2 x. ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) ) |
| 33 |
7 18 23 32
|
perfectALTVlem2 |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. Prime /\ ( N / ( 2 ^ ( 2 pCnt N ) ) ) = ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) |
| 34 |
33
|
simprd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) = ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) |
| 35 |
33
|
simpld |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. Prime ) |
| 36 |
34 35
|
eqeltrrd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime ) |
| 37 |
7
|
nncnd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. CC ) |
| 38 |
|
ax-1cn |
|- 1 e. CC |
| 39 |
|
pncan |
|- ( ( ( 2 pCnt N ) e. CC /\ 1 e. CC ) -> ( ( ( 2 pCnt N ) + 1 ) - 1 ) = ( 2 pCnt N ) ) |
| 40 |
37 38 39
|
sylancl |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( ( 2 pCnt N ) + 1 ) - 1 ) = ( 2 pCnt N ) ) |
| 41 |
40
|
eqcomd |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) = ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) |
| 42 |
41
|
oveq2d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) = ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) ) |
| 43 |
42 34
|
oveq12d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) |
| 44 |
29 43
|
eqtr3d |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) |
| 45 |
|
oveq2 |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( 2 ^ p ) = ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) ) |
| 46 |
45
|
oveq1d |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( 2 ^ p ) - 1 ) = ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) |
| 47 |
46
|
eleq1d |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( ( 2 ^ p ) - 1 ) e. Prime <-> ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime ) ) |
| 48 |
|
oveq1 |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( p - 1 ) = ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) |
| 49 |
48
|
oveq2d |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( 2 ^ ( p - 1 ) ) = ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) ) |
| 50 |
49 46
|
oveq12d |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) |
| 51 |
50
|
eqeq2d |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) <-> N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) ) |
| 52 |
47 51
|
anbi12d |
|- ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) <-> ( ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) ) ) |
| 53 |
52
|
rspcev |
|- ( ( ( ( 2 pCnt N ) + 1 ) e. ZZ /\ ( ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) ) -> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) |
| 54 |
9 36 44 53
|
syl12anc |
|- ( ( ( N e. NN /\ N e. Even ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) |
| 55 |
54
|
ex |
|- ( ( N e. NN /\ N e. Even ) -> ( ( 1 sigma N ) = ( 2 x. N ) -> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) ) |
| 56 |
|
perfect1 |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) = ( ( 2 ^ p ) x. ( ( 2 ^ p ) - 1 ) ) ) |
| 57 |
|
2cn |
|- 2 e. CC |
| 58 |
|
mersenne |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> p e. Prime ) |
| 59 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 60 |
58 59
|
syl |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> p e. NN ) |
| 61 |
|
expm1t |
|- ( ( 2 e. CC /\ p e. NN ) -> ( 2 ^ p ) = ( ( 2 ^ ( p - 1 ) ) x. 2 ) ) |
| 62 |
57 60 61
|
sylancr |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 2 ^ p ) = ( ( 2 ^ ( p - 1 ) ) x. 2 ) ) |
| 63 |
|
nnm1nn0 |
|- ( p e. NN -> ( p - 1 ) e. NN0 ) |
| 64 |
60 63
|
syl |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( p - 1 ) e. NN0 ) |
| 65 |
|
expcl |
|- ( ( 2 e. CC /\ ( p - 1 ) e. NN0 ) -> ( 2 ^ ( p - 1 ) ) e. CC ) |
| 66 |
57 64 65
|
sylancr |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 2 ^ ( p - 1 ) ) e. CC ) |
| 67 |
|
mulcom |
|- ( ( ( 2 ^ ( p - 1 ) ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ ( p - 1 ) ) x. 2 ) = ( 2 x. ( 2 ^ ( p - 1 ) ) ) ) |
| 68 |
66 57 67
|
sylancl |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ ( p - 1 ) ) x. 2 ) = ( 2 x. ( 2 ^ ( p - 1 ) ) ) ) |
| 69 |
62 68
|
eqtrd |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 2 ^ p ) = ( 2 x. ( 2 ^ ( p - 1 ) ) ) ) |
| 70 |
69
|
oveq1d |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ p ) x. ( ( 2 ^ p ) - 1 ) ) = ( ( 2 x. ( 2 ^ ( p - 1 ) ) ) x. ( ( 2 ^ p ) - 1 ) ) ) |
| 71 |
|
2cnd |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> 2 e. CC ) |
| 72 |
|
prmnn |
|- ( ( ( 2 ^ p ) - 1 ) e. Prime -> ( ( 2 ^ p ) - 1 ) e. NN ) |
| 73 |
72
|
adantl |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ p ) - 1 ) e. NN ) |
| 74 |
73
|
nncnd |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ p ) - 1 ) e. CC ) |
| 75 |
71 66 74
|
mulassd |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 x. ( 2 ^ ( p - 1 ) ) ) x. ( ( 2 ^ p ) - 1 ) ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) |
| 76 |
56 70 75
|
3eqtrd |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) |
| 77 |
|
oveq2 |
|- ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( 1 sigma N ) = ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) |
| 78 |
|
oveq2 |
|- ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( 2 x. N ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) |
| 79 |
77 78
|
eqeq12d |
|- ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( ( 1 sigma N ) = ( 2 x. N ) <-> ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) ) |
| 80 |
76 79
|
syl5ibrcom |
|- ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) ) |
| 81 |
80
|
impr |
|- ( ( p e. ZZ /\ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) |
| 82 |
81
|
rexlimiva |
|- ( E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) |
| 83 |
55 82
|
impbid1 |
|- ( ( N e. NN /\ N e. Even ) -> ( ( 1 sigma N ) = ( 2 x. N ) <-> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) ) |