| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2dvdseven |  | 
						
							| 2 | 1 | ad2antlr |  | 
						
							| 3 |  | 2prm |  | 
						
							| 4 |  | simpll |  | 
						
							| 5 |  | pcelnn |  | 
						
							| 6 | 3 4 5 | sylancr |  | 
						
							| 7 | 2 6 | mpbird |  | 
						
							| 8 | 7 | nnzd |  | 
						
							| 9 | 8 | peano2zd |  | 
						
							| 10 |  | pcdvds |  | 
						
							| 11 | 3 4 10 | sylancr |  | 
						
							| 12 |  | 2nn |  | 
						
							| 13 | 7 | nnnn0d |  | 
						
							| 14 |  | nnexpcl |  | 
						
							| 15 | 12 13 14 | sylancr |  | 
						
							| 16 |  | nndivdvds |  | 
						
							| 17 | 4 15 16 | syl2anc |  | 
						
							| 18 | 11 17 | mpbid |  | 
						
							| 19 | 18 | nnzd |  | 
						
							| 20 |  | pcndvds2 |  | 
						
							| 21 | 3 4 20 | sylancr |  | 
						
							| 22 |  | isodd3 |  | 
						
							| 23 | 19 21 22 | sylanbrc |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 |  | nncn |  | 
						
							| 26 | 25 | ad2antrr |  | 
						
							| 27 | 15 | nncnd |  | 
						
							| 28 | 15 | nnne0d |  | 
						
							| 29 | 26 27 28 | divcan2d |  | 
						
							| 30 | 29 | oveq2d |  | 
						
							| 31 | 29 | oveq2d |  | 
						
							| 32 | 24 30 31 | 3eqtr4d |  | 
						
							| 33 | 7 18 23 32 | perfectALTVlem2 |  | 
						
							| 34 | 33 | simprd |  | 
						
							| 35 | 33 | simpld |  | 
						
							| 36 | 34 35 | eqeltrrd |  | 
						
							| 37 | 7 | nncnd |  | 
						
							| 38 |  | ax-1cn |  | 
						
							| 39 |  | pncan |  | 
						
							| 40 | 37 38 39 | sylancl |  | 
						
							| 41 | 40 | eqcomd |  | 
						
							| 42 | 41 | oveq2d |  | 
						
							| 43 | 42 34 | oveq12d |  | 
						
							| 44 | 29 43 | eqtr3d |  | 
						
							| 45 |  | oveq2 |  | 
						
							| 46 | 45 | oveq1d |  | 
						
							| 47 | 46 | eleq1d |  | 
						
							| 48 |  | oveq1 |  | 
						
							| 49 | 48 | oveq2d |  | 
						
							| 50 | 49 46 | oveq12d |  | 
						
							| 51 | 50 | eqeq2d |  | 
						
							| 52 | 47 51 | anbi12d |  | 
						
							| 53 | 52 | rspcev |  | 
						
							| 54 | 9 36 44 53 | syl12anc |  | 
						
							| 55 | 54 | ex |  | 
						
							| 56 |  | perfect1 |  | 
						
							| 57 |  | 2cn |  | 
						
							| 58 |  | mersenne |  | 
						
							| 59 |  | prmnn |  | 
						
							| 60 | 58 59 | syl |  | 
						
							| 61 |  | expm1t |  | 
						
							| 62 | 57 60 61 | sylancr |  | 
						
							| 63 |  | nnm1nn0 |  | 
						
							| 64 | 60 63 | syl |  | 
						
							| 65 |  | expcl |  | 
						
							| 66 | 57 64 65 | sylancr |  | 
						
							| 67 |  | mulcom |  | 
						
							| 68 | 66 57 67 | sylancl |  | 
						
							| 69 | 62 68 | eqtrd |  | 
						
							| 70 | 69 | oveq1d |  | 
						
							| 71 |  | 2cnd |  | 
						
							| 72 |  | prmnn |  | 
						
							| 73 | 72 | adantl |  | 
						
							| 74 | 73 | nncnd |  | 
						
							| 75 | 71 66 74 | mulassd |  | 
						
							| 76 | 56 70 75 | 3eqtrd |  | 
						
							| 77 |  | oveq2 |  | 
						
							| 78 |  | oveq2 |  | 
						
							| 79 | 77 78 | eqeq12d |  | 
						
							| 80 | 76 79 | syl5ibrcom |  | 
						
							| 81 | 80 | impr |  | 
						
							| 82 | 81 | rexlimiva |  | 
						
							| 83 | 55 82 | impbid1 |  |