Metamath Proof Explorer


Theorem perfectALTVlem2

Description: Lemma for perfectALTV . (Contributed by Mario Carneiro, 17-May-2016) (Revised by AV, 1-Jul-2020)

Ref Expression
Hypotheses perfectALTVlem.1 φA
perfectALTVlem.2 φB
perfectALTVlem.3 φBOdd
perfectALTVlem.4 φ1σ2AB=22AB
Assertion perfectALTVlem2 φBB=2A+11

Proof

Step Hyp Ref Expression
1 perfectALTVlem.1 φA
2 perfectALTVlem.2 φB
3 perfectALTVlem.3 φBOdd
4 perfectALTVlem.4 φ1σ2AB=22AB
5 1re 1
6 5 a1i φ1
7 1 2 3 4 perfectALTVlem1 φ2A+12A+11B2A+11
8 7 simp3d φB2A+11
9 8 nnred φB2A+11
10 2 nnred φB
11 8 nnge1d φ1B2A+11
12 2cn 2
13 exp1 221=2
14 12 13 ax-mp 21=2
15 df-2 2=1+1
16 14 15 eqtri 21=1+1
17 2re 2
18 17 a1i φ2
19 1zzd φ1
20 1 peano2nnd φA+1
21 20 nnzd φA+1
22 1lt2 1<2
23 22 a1i φ1<2
24 1 nnrpd φA+
25 ltaddrp 1A+1<1+A
26 5 24 25 sylancr φ1<1+A
27 ax-1cn 1
28 1 nncnd φA
29 addcom 1A1+A=A+1
30 27 28 29 sylancr φ1+A=A+1
31 26 30 breqtrd φ1<A+1
32 ltexp2a 21A+11<21<A+121<2A+1
33 18 19 21 23 31 32 syl32anc φ21<2A+1
34 16 33 eqbrtrrid φ1+1<2A+1
35 7 simp1d φ2A+1
36 35 nnred φ2A+1
37 6 6 36 ltaddsubd φ1+1<2A+11<2A+11
38 34 37 mpbid φ1<2A+11
39 1rp 1+
40 39 a1i φ1+
41 peano2rem 2A+12A+11
42 36 41 syl φ2A+11
43 expgt1 2A+11<21<2A+1
44 18 20 23 43 syl3anc φ1<2A+1
45 posdif 12A+11<2A+10<2A+11
46 5 36 45 sylancr φ1<2A+10<2A+11
47 44 46 mpbid φ0<2A+11
48 42 47 jca φ2A+110<2A+11
49 elrp 2A+11+2A+110<2A+11
50 48 49 sylibr φ2A+11+
51 nnrp BB+
52 2 51 syl φB+
53 40 50 52 ltdiv2d φ1<2A+11B2A+11<B1
54 38 53 mpbid φB2A+11<B1
55 2 nncnd φB
56 55 div1d φB1=B
57 54 56 breqtrd φB2A+11<B
58 6 9 10 11 57 lelttrd φ1<B
59 eluz2b2 B2B1<B
60 2 58 59 sylanbrc φB2
61 fzfid φ1BFin
62 dvdsssfz1 Bx|xB1B
63 2 62 syl φx|xB1B
64 ssfi 1BFinx|xB1Bx|xBFin
65 61 63 64 syl2anc φx|xBFin
66 65 ad2antrr φnnB¬nB2A+11Bx|xBFin
67 ssrab2 x|xB
68 67 a1i φnnB¬nB2A+11Bx|xB
69 68 sselda φnnB¬nB2A+11Bkx|xBk
70 69 nnred φnnB¬nB2A+11Bkx|xBk
71 69 nnnn0d φnnB¬nB2A+11Bkx|xBk0
72 71 nn0ge0d φnnB¬nB2A+11Bkx|xB0k
73 df-tp B2A+11Bn=B2A+11Bn
74 prssi B2A+11BB2A+11B
75 8 2 74 syl2anc φB2A+11B
76 75 ad2antrr φnnB¬nB2A+11BB2A+11B
77 simplrl φnnB¬nB2A+11Bn
78 77 snssd φnnB¬nB2A+11Bn
79 76 78 unssd φnnB¬nB2A+11BB2A+11Bn
80 73 79 eqsstrid φnnB¬nB2A+11BB2A+11Bn
81 eltpi xB2A+11Bnx=B2A+11x=Bx=n
82 7 simp2d φ2A+11
83 82 nnzd φ2A+11
84 8 nnzd φB2A+11
85 dvdsmul2 2A+11B2A+11B2A+112A+11B2A+11
86 83 84 85 syl2anc φB2A+112A+11B2A+11
87 82 nncnd φ2A+11
88 82 nnne0d φ2A+110
89 55 87 88 divcan2d φ2A+11B2A+11=B
90 86 89 breqtrd φB2A+11B
91 breq1 x=B2A+11xBB2A+11B
92 90 91 syl5ibrcom φx=B2A+11xB
93 92 ad2antrr φnnB¬nB2A+11Bx=B2A+11xB
94 2 nnzd φB
95 iddvds BBB
96 94 95 syl φBB
97 breq1 x=BxBBB
98 96 97 syl5ibrcom φx=BxB
99 98 ad2antrr φnnB¬nB2A+11Bx=BxB
100 simplrr φnnB¬nB2A+11BnB
101 breq1 x=nxBnB
102 100 101 syl5ibrcom φnnB¬nB2A+11Bx=nxB
103 93 99 102 3jaod φnnB¬nB2A+11Bx=B2A+11x=Bx=nxB
104 81 103 syl5 φnnB¬nB2A+11BxB2A+11BnxB
105 104 imp φnnB¬nB2A+11BxB2A+11BnxB
106 80 105 ssrabdv φnnB¬nB2A+11BB2A+11Bnx|xB
107 66 70 72 106 fsumless φnnB¬nB2A+11BkB2A+11Bnkkx|xBk
108 simpr φnnB¬nB2A+11B¬nB2A+11B
109 disjsn B2A+11Bn=¬nB2A+11B
110 108 109 sylibr φnnB¬nB2A+11BB2A+11Bn=
111 73 a1i φnnB¬nB2A+11BB2A+11Bn=B2A+11Bn
112 tpfi B2A+11BnFin
113 112 a1i φnnB¬nB2A+11BB2A+11BnFin
114 80 sselda φnnB¬nB2A+11BkB2A+11Bnk
115 114 nncnd φnnB¬nB2A+11BkB2A+11Bnk
116 110 111 113 115 fsumsplit φnnB¬nB2A+11BkB2A+11Bnk=kB2A+11Bk+knk
117 8 nncnd φB2A+11
118 id k=B2A+11k=B2A+11
119 118 sumsn B2A+11B2A+11kB2A+11k=B2A+11
120 8 117 119 syl2anc φkB2A+11k=B2A+11
121 id k=Bk=B
122 121 sumsn BBkBk=B
123 2 55 122 syl2anc φkBk=B
124 120 123 oveq12d φkB2A+11k+kBk=B2A+11+B
125 incom BB2A+11=B2A+11B
126 9 57 gtned φBB2A+11
127 disjsn2 BB2A+11BB2A+11=
128 126 127 syl φBB2A+11=
129 125 128 eqtr3id φB2A+11B=
130 df-pr B2A+11B=B2A+11B
131 130 a1i φB2A+11B=B2A+11B
132 prfi B2A+11BFin
133 132 a1i φB2A+11BFin
134 75 sselda φkB2A+11Bk
135 134 nncnd φkB2A+11Bk
136 129 131 133 135 fsumsplit φkB2A+11Bk=kB2A+11k+kBk
137 87 55 mulcld φ2A+11B
138 55 137 87 88 divdird φB+2A+11B2A+11=B2A+11+2A+11B2A+11
139 35 nncnd φ2A+1
140 27 a1i φ1
141 139 140 55 subdird φ2A+11B=2A+1B1B
142 55 mullidd φ1B=B
143 142 oveq2d φ2A+1B1B=2A+1BB
144 141 143 eqtrd φ2A+11B=2A+1BB
145 144 oveq2d φB+2A+11B=B+2A+1B-B
146 139 55 mulcld φ2A+1B
147 55 146 pncan3d φB+2A+1B-B=2A+1B
148 145 147 eqtrd φB+2A+11B=2A+1B
149 148 oveq1d φB+2A+11B2A+11=2A+1B2A+11
150 139 55 87 88 divassd φ2A+1B2A+11=2A+1B2A+11
151 149 150 eqtrd φB+2A+11B2A+11=2A+1B2A+11
152 55 87 88 divcan3d φ2A+11B2A+11=B
153 152 oveq2d φB2A+11+2A+11B2A+11=B2A+11+B
154 138 151 153 3eqtr3d φ2A+1B2A+11=B2A+11+B
155 124 136 154 3eqtr4d φkB2A+11Bk=2A+1B2A+11
156 155 ad2antrr φnnB¬nB2A+11BkB2A+11Bk=2A+1B2A+11
157 77 nncnd φnnB¬nB2A+11Bn
158 id k=nk=n
159 158 sumsn nnknk=n
160 157 157 159 syl2anc φnnB¬nB2A+11Bknk=n
161 156 160 oveq12d φnnB¬nB2A+11BkB2A+11Bk+knk=2A+1B2A+11+n
162 116 161 eqtrd φnnB¬nB2A+11BkB2A+11Bnk=2A+1B2A+11+n
163 1 nnnn0d φA0
164 expp1 2A02A+1=2A2
165 12 163 164 sylancr φ2A+1=2A2
166 2nn 2
167 nnexpcl 2A02A
168 166 163 167 sylancr φ2A
169 168 nncnd φ2A
170 mulcom 2A22A2=22A
171 169 12 170 sylancl φ2A2=22A
172 165 171 eqtrd φ2A+1=22A
173 172 oveq1d φ2A+1B=22AB
174 12 a1i φ2
175 174 169 55 mulassd φ22AB=22AB
176 isodd7 BOddB2gcdB=1
177 simpr B2gcdB=12gcdB=1
178 176 177 sylbi BOdd2gcdB=1
179 3 178 syl φ2gcdB=1
180 2z 2
181 180 a1i φ2
182 rpexp1i 2BA02gcdB=12AgcdB=1
183 181 94 163 182 syl3anc φ2gcdB=12AgcdB=1
184 179 183 mpd φ2AgcdB=1
185 sgmmul 12AB2AgcdB=11σ2AB=1σ2A1σB
186 140 168 2 184 185 syl13anc φ1σ2AB=1σ2A1σB
187 pncan A1A+1-1=A
188 28 27 187 sylancl φA+1-1=A
189 188 oveq2d φ2A+1-1=2A
190 189 oveq2d φ1σ2A+1-1=1σ2A
191 1sgm2ppw A+11σ2A+1-1=2A+11
192 20 191 syl φ1σ2A+1-1=2A+11
193 190 192 eqtr3d φ1σ2A=2A+11
194 193 oveq1d φ1σ2A1σB=2A+111σB
195 186 4 194 3eqtr3d φ22AB=2A+111σB
196 173 175 195 3eqtrd φ2A+1B=2A+111σB
197 196 oveq1d φ2A+1B2A+11=2A+111σB2A+11
198 1nn0 10
199 sgmnncl 10B1σB
200 198 2 199 sylancr φ1σB
201 200 nncnd φ1σB
202 201 87 88 divcan3d φ2A+111σB2A+11=1σB
203 197 150 202 3eqtr3d φ2A+1B2A+11=1σB
204 sgmval 1B1σB=kx|xBk1
205 27 2 204 sylancr φ1σB=kx|xBk1
206 simpr φkx|xBkx|xB
207 67 206 sselid φkx|xBk
208 207 nncnd φkx|xBk
209 208 cxp1d φkx|xBk1=k
210 209 sumeq2dv φkx|xBk1=kx|xBk
211 203 205 210 3eqtrrd φkx|xBk=2A+1B2A+11
212 211 ad2antrr φnnB¬nB2A+11Bkx|xBk=2A+1B2A+11
213 107 162 212 3brtr3d φnnB¬nB2A+11B2A+1B2A+11+n2A+1B2A+11
214 36 9 remulcld φ2A+1B2A+11
215 214 ad2antrr φnnB¬nB2A+11B2A+1B2A+11
216 77 nnrpd φnnB¬nB2A+11Bn+
217 215 216 ltaddrpd φnnB¬nB2A+11B2A+1B2A+11<2A+1B2A+11+n
218 77 nnred φnnB¬nB2A+11Bn
219 215 218 readdcld φnnB¬nB2A+11B2A+1B2A+11+n
220 215 219 ltnled φnnB¬nB2A+11B2A+1B2A+11<2A+1B2A+11+n¬2A+1B2A+11+n2A+1B2A+11
221 217 220 mpbid φnnB¬nB2A+11B¬2A+1B2A+11+n2A+1B2A+11
222 213 221 condan φnnBnB2A+11B
223 elpri nB2A+11Bn=B2A+11n=B
224 222 223 syl φnnBn=B2A+11n=B
225 224 expr φnnBn=B2A+11n=B
226 225 ralrimiva φnnBn=B2A+11n=B
227 6 58 gtned φB1
228 227 necomd φ1B
229 1nn 1
230 229 a1i φ1
231 1dvds B1B
232 94 231 syl φ1B
233 breq1 n=1nB1B
234 eqeq1 n=1n=B2A+111=B2A+11
235 eqeq1 n=1n=B1=B
236 234 235 orbi12d n=1n=B2A+11n=B1=B2A+111=B
237 233 236 imbi12d n=1nBn=B2A+11n=B1B1=B2A+111=B
238 237 rspcv 1nnBn=B2A+11n=B1B1=B2A+111=B
239 230 226 232 238 syl3c φ1=B2A+111=B
240 239 ord φ¬1=B2A+111=B
241 240 necon1ad φ1B1=B2A+11
242 228 241 mpd φ1=B2A+11
243 242 eqeq2d φn=1n=B2A+11
244 243 orbi1d φn=1n=Bn=B2A+11n=B
245 244 imbi2d φnBn=1n=BnBn=B2A+11n=B
246 245 ralbidv φnnBn=1n=BnnBn=B2A+11n=B
247 226 246 mpbird φnnBn=1n=B
248 isprm2 BB2nnBn=1n=B
249 60 247 248 sylanbrc φB
250 214 ltp1d φ2A+1B2A+11<2A+1B2A+11+1
251 peano2re 2A+1B2A+112A+1B2A+11+1
252 214 251 syl φ2A+1B2A+11+1
253 214 252 ltnled φ2A+1B2A+11<2A+1B2A+11+1¬2A+1B2A+11+12A+1B2A+11
254 250 253 mpbid φ¬2A+1B2A+11+12A+1B2A+11
255 207 nnred φkx|xBk
256 207 nnnn0d φkx|xBk0
257 256 nn0ge0d φkx|xB0k
258 df-tp B2A+11B1=B2A+11B1
259 snssi 11
260 229 259 mp1i φ1
261 75 260 unssd φB2A+11B1
262 258 261 eqsstrid φB2A+11B1
263 eltpi xB2A+11B1x=B2A+11x=Bx=1
264 breq1 x=1xB1B
265 232 264 syl5ibrcom φx=1xB
266 92 98 265 3jaod φx=B2A+11x=Bx=1xB
267 263 266 syl5 φxB2A+11B1xB
268 267 imp φxB2A+11B1xB
269 262 268 ssrabdv φB2A+11B1x|xB
270 65 255 257 269 fsumless φkB2A+11B1kkx|xBk
271 270 adantr φB2A+11kB2A+11B1kkx|xBk
272 55 87 88 diveq1ad φB2A+11=1B=2A+11
273 272 necon3bid φB2A+111B2A+11
274 273 biimpar φB2A+11B2A+111
275 274 necomd φB2A+111B2A+11
276 228 adantr φB2A+111B
277 275 276 nelprd φB2A+11¬1B2A+11B
278 disjsn B2A+11B1=¬1B2A+11B
279 277 278 sylibr φB2A+11B2A+11B1=
280 258 a1i φB2A+11B2A+11B1=B2A+11B1
281 tpfi B2A+11B1Fin
282 281 a1i φB2A+11B2A+11B1Fin
283 262 adantr φB2A+11B2A+11B1
284 283 sselda φB2A+11kB2A+11B1k
285 284 nncnd φB2A+11kB2A+11B1k
286 279 280 282 285 fsumsplit φB2A+11kB2A+11B1k=kB2A+11Bk+k1k
287 id k=1k=1
288 287 sumsn 11k1k=1
289 140 27 288 sylancl φk1k=1
290 155 289 oveq12d φkB2A+11Bk+k1k=2A+1B2A+11+1
291 290 adantr φB2A+11kB2A+11Bk+k1k=2A+1B2A+11+1
292 286 291 eqtrd φB2A+11kB2A+11B1k=2A+1B2A+11+1
293 211 adantr φB2A+11kx|xBk=2A+1B2A+11
294 271 292 293 3brtr3d φB2A+112A+1B2A+11+12A+1B2A+11
295 294 ex φB2A+112A+1B2A+11+12A+1B2A+11
296 295 necon1bd φ¬2A+1B2A+11+12A+1B2A+11B=2A+11
297 254 296 mpd φB=2A+11
298 249 297 jca φBB=2A+11