Step |
Hyp |
Ref |
Expression |
1 |
|
perfectALTVlem.1 |
|
2 |
|
perfectALTVlem.2 |
|
3 |
|
perfectALTVlem.3 |
|
4 |
|
perfectALTVlem.4 |
|
5 |
|
1re |
|
6 |
5
|
a1i |
|
7 |
1 2 3 4
|
perfectALTVlem1 |
|
8 |
7
|
simp3d |
|
9 |
8
|
nnred |
|
10 |
2
|
nnred |
|
11 |
8
|
nnge1d |
|
12 |
|
2cn |
|
13 |
|
exp1 |
|
14 |
12 13
|
ax-mp |
|
15 |
|
df-2 |
|
16 |
14 15
|
eqtri |
|
17 |
|
2re |
|
18 |
17
|
a1i |
|
19 |
|
1zzd |
|
20 |
1
|
peano2nnd |
|
21 |
20
|
nnzd |
|
22 |
|
1lt2 |
|
23 |
22
|
a1i |
|
24 |
1
|
nnrpd |
|
25 |
|
ltaddrp |
|
26 |
5 24 25
|
sylancr |
|
27 |
|
ax-1cn |
|
28 |
1
|
nncnd |
|
29 |
|
addcom |
|
30 |
27 28 29
|
sylancr |
|
31 |
26 30
|
breqtrd |
|
32 |
|
ltexp2a |
|
33 |
18 19 21 23 31 32
|
syl32anc |
|
34 |
16 33
|
eqbrtrrid |
|
35 |
7
|
simp1d |
|
36 |
35
|
nnred |
|
37 |
6 6 36
|
ltaddsubd |
|
38 |
34 37
|
mpbid |
|
39 |
|
1rp |
|
40 |
39
|
a1i |
|
41 |
|
peano2rem |
|
42 |
36 41
|
syl |
|
43 |
|
expgt1 |
|
44 |
18 20 23 43
|
syl3anc |
|
45 |
|
posdif |
|
46 |
5 36 45
|
sylancr |
|
47 |
44 46
|
mpbid |
|
48 |
42 47
|
jca |
|
49 |
|
elrp |
|
50 |
48 49
|
sylibr |
|
51 |
|
nnrp |
|
52 |
2 51
|
syl |
|
53 |
40 50 52
|
ltdiv2d |
|
54 |
38 53
|
mpbid |
|
55 |
2
|
nncnd |
|
56 |
55
|
div1d |
|
57 |
54 56
|
breqtrd |
|
58 |
6 9 10 11 57
|
lelttrd |
|
59 |
|
eluz2b2 |
|
60 |
2 58 59
|
sylanbrc |
|
61 |
|
fzfid |
|
62 |
|
dvdsssfz1 |
|
63 |
2 62
|
syl |
|
64 |
|
ssfi |
|
65 |
61 63 64
|
syl2anc |
|
66 |
65
|
ad2antrr |
|
67 |
|
ssrab2 |
|
68 |
67
|
a1i |
|
69 |
68
|
sselda |
|
70 |
69
|
nnred |
|
71 |
69
|
nnnn0d |
|
72 |
71
|
nn0ge0d |
|
73 |
|
df-tp |
|
74 |
|
prssi |
|
75 |
8 2 74
|
syl2anc |
|
76 |
75
|
ad2antrr |
|
77 |
|
simplrl |
|
78 |
77
|
snssd |
|
79 |
76 78
|
unssd |
|
80 |
73 79
|
eqsstrid |
|
81 |
|
eltpi |
|
82 |
7
|
simp2d |
|
83 |
82
|
nnzd |
|
84 |
8
|
nnzd |
|
85 |
|
dvdsmul2 |
|
86 |
83 84 85
|
syl2anc |
|
87 |
82
|
nncnd |
|
88 |
82
|
nnne0d |
|
89 |
55 87 88
|
divcan2d |
|
90 |
86 89
|
breqtrd |
|
91 |
|
breq1 |
|
92 |
90 91
|
syl5ibrcom |
|
93 |
92
|
ad2antrr |
|
94 |
2
|
nnzd |
|
95 |
|
iddvds |
|
96 |
94 95
|
syl |
|
97 |
|
breq1 |
|
98 |
96 97
|
syl5ibrcom |
|
99 |
98
|
ad2antrr |
|
100 |
|
simplrr |
|
101 |
|
breq1 |
|
102 |
100 101
|
syl5ibrcom |
|
103 |
93 99 102
|
3jaod |
|
104 |
81 103
|
syl5 |
|
105 |
104
|
imp |
|
106 |
80 105
|
ssrabdv |
|
107 |
66 70 72 106
|
fsumless |
|
108 |
|
simpr |
|
109 |
|
disjsn |
|
110 |
108 109
|
sylibr |
|
111 |
73
|
a1i |
|
112 |
|
tpfi |
|
113 |
112
|
a1i |
|
114 |
80
|
sselda |
|
115 |
114
|
nncnd |
|
116 |
110 111 113 115
|
fsumsplit |
|
117 |
8
|
nncnd |
|
118 |
|
id |
|
119 |
118
|
sumsn |
|
120 |
8 117 119
|
syl2anc |
|
121 |
|
id |
|
122 |
121
|
sumsn |
|
123 |
2 55 122
|
syl2anc |
|
124 |
120 123
|
oveq12d |
|
125 |
|
incom |
|
126 |
9 57
|
gtned |
|
127 |
|
disjsn2 |
|
128 |
126 127
|
syl |
|
129 |
125 128
|
eqtr3id |
|
130 |
|
df-pr |
|
131 |
130
|
a1i |
|
132 |
|
prfi |
|
133 |
132
|
a1i |
|
134 |
75
|
sselda |
|
135 |
134
|
nncnd |
|
136 |
129 131 133 135
|
fsumsplit |
|
137 |
87 55
|
mulcld |
|
138 |
55 137 87 88
|
divdird |
|
139 |
35
|
nncnd |
|
140 |
27
|
a1i |
|
141 |
139 140 55
|
subdird |
|
142 |
55
|
mulid2d |
|
143 |
142
|
oveq2d |
|
144 |
141 143
|
eqtrd |
|
145 |
144
|
oveq2d |
|
146 |
139 55
|
mulcld |
|
147 |
55 146
|
pncan3d |
|
148 |
145 147
|
eqtrd |
|
149 |
148
|
oveq1d |
|
150 |
139 55 87 88
|
divassd |
|
151 |
149 150
|
eqtrd |
|
152 |
55 87 88
|
divcan3d |
|
153 |
152
|
oveq2d |
|
154 |
138 151 153
|
3eqtr3d |
|
155 |
124 136 154
|
3eqtr4d |
|
156 |
155
|
ad2antrr |
|
157 |
77
|
nncnd |
|
158 |
|
id |
|
159 |
158
|
sumsn |
|
160 |
157 157 159
|
syl2anc |
|
161 |
156 160
|
oveq12d |
|
162 |
116 161
|
eqtrd |
|
163 |
1
|
nnnn0d |
|
164 |
|
expp1 |
|
165 |
12 163 164
|
sylancr |
|
166 |
|
2nn |
|
167 |
|
nnexpcl |
|
168 |
166 163 167
|
sylancr |
|
169 |
168
|
nncnd |
|
170 |
|
mulcom |
|
171 |
169 12 170
|
sylancl |
|
172 |
165 171
|
eqtrd |
|
173 |
172
|
oveq1d |
|
174 |
12
|
a1i |
|
175 |
174 169 55
|
mulassd |
|
176 |
|
isodd7 |
|
177 |
|
simpr |
|
178 |
176 177
|
sylbi |
|
179 |
3 178
|
syl |
|
180 |
|
2z |
|
181 |
180
|
a1i |
|
182 |
|
rpexp1i |
|
183 |
181 94 163 182
|
syl3anc |
|
184 |
179 183
|
mpd |
|
185 |
|
sgmmul |
|
186 |
140 168 2 184 185
|
syl13anc |
|
187 |
|
pncan |
|
188 |
28 27 187
|
sylancl |
|
189 |
188
|
oveq2d |
|
190 |
189
|
oveq2d |
|
191 |
|
1sgm2ppw |
|
192 |
20 191
|
syl |
|
193 |
190 192
|
eqtr3d |
|
194 |
193
|
oveq1d |
|
195 |
186 4 194
|
3eqtr3d |
|
196 |
173 175 195
|
3eqtrd |
|
197 |
196
|
oveq1d |
|
198 |
|
1nn0 |
|
199 |
|
sgmnncl |
|
200 |
198 2 199
|
sylancr |
|
201 |
200
|
nncnd |
|
202 |
201 87 88
|
divcan3d |
|
203 |
197 150 202
|
3eqtr3d |
|
204 |
|
sgmval |
|
205 |
27 2 204
|
sylancr |
|
206 |
|
simpr |
|
207 |
67 206
|
sselid |
|
208 |
207
|
nncnd |
|
209 |
208
|
cxp1d |
|
210 |
209
|
sumeq2dv |
|
211 |
203 205 210
|
3eqtrrd |
|
212 |
211
|
ad2antrr |
|
213 |
107 162 212
|
3brtr3d |
|
214 |
36 9
|
remulcld |
|
215 |
214
|
ad2antrr |
|
216 |
77
|
nnrpd |
|
217 |
215 216
|
ltaddrpd |
|
218 |
77
|
nnred |
|
219 |
215 218
|
readdcld |
|
220 |
215 219
|
ltnled |
|
221 |
217 220
|
mpbid |
|
222 |
213 221
|
condan |
|
223 |
|
elpri |
|
224 |
222 223
|
syl |
|
225 |
224
|
expr |
|
226 |
225
|
ralrimiva |
|
227 |
6 58
|
gtned |
|
228 |
227
|
necomd |
|
229 |
|
1nn |
|
230 |
229
|
a1i |
|
231 |
|
1dvds |
|
232 |
94 231
|
syl |
|
233 |
|
breq1 |
|
234 |
|
eqeq1 |
|
235 |
|
eqeq1 |
|
236 |
234 235
|
orbi12d |
|
237 |
233 236
|
imbi12d |
|
238 |
237
|
rspcv |
|
239 |
230 226 232 238
|
syl3c |
|
240 |
239
|
ord |
|
241 |
240
|
necon1ad |
|
242 |
228 241
|
mpd |
|
243 |
242
|
eqeq2d |
|
244 |
243
|
orbi1d |
|
245 |
244
|
imbi2d |
|
246 |
245
|
ralbidv |
|
247 |
226 246
|
mpbird |
|
248 |
|
isprm2 |
|
249 |
60 247 248
|
sylanbrc |
|
250 |
214
|
ltp1d |
|
251 |
|
peano2re |
|
252 |
214 251
|
syl |
|
253 |
214 252
|
ltnled |
|
254 |
250 253
|
mpbid |
|
255 |
207
|
nnred |
|
256 |
207
|
nnnn0d |
|
257 |
256
|
nn0ge0d |
|
258 |
|
df-tp |
|
259 |
|
snssi |
|
260 |
229 259
|
mp1i |
|
261 |
75 260
|
unssd |
|
262 |
258 261
|
eqsstrid |
|
263 |
|
eltpi |
|
264 |
|
breq1 |
|
265 |
232 264
|
syl5ibrcom |
|
266 |
92 98 265
|
3jaod |
|
267 |
263 266
|
syl5 |
|
268 |
267
|
imp |
|
269 |
262 268
|
ssrabdv |
|
270 |
65 255 257 269
|
fsumless |
|
271 |
270
|
adantr |
|
272 |
55 87 88
|
diveq1ad |
|
273 |
272
|
necon3bid |
|
274 |
273
|
biimpar |
|
275 |
274
|
necomd |
|
276 |
228
|
adantr |
|
277 |
275 276
|
nelprd |
|
278 |
|
disjsn |
|
279 |
277 278
|
sylibr |
|
280 |
258
|
a1i |
|
281 |
|
tpfi |
|
282 |
281
|
a1i |
|
283 |
262
|
adantr |
|
284 |
283
|
sselda |
|
285 |
284
|
nncnd |
|
286 |
279 280 282 285
|
fsumsplit |
|
287 |
|
id |
|
288 |
287
|
sumsn |
|
289 |
140 27 288
|
sylancl |
|
290 |
155 289
|
oveq12d |
|
291 |
290
|
adantr |
|
292 |
286 291
|
eqtrd |
|
293 |
211
|
adantr |
|
294 |
271 292 293
|
3brtr3d |
|
295 |
294
|
ex |
|
296 |
295
|
necon1bd |
|
297 |
254 296
|
mpd |
|
298 |
249 297
|
jca |
|