| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcld.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
ptcld.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) |
| 3 |
|
ptcld.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 4 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) |
| 5 |
4
|
cldss |
⊢ ( 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) → 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 6 |
3 5
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 8 |
|
boxriin |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → X 𝑘 ∈ 𝐴 𝐶 = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 10 |
|
eqid |
⊢ ( ∏t ‘ 𝐹 ) = ( ∏t ‘ 𝐹 ) |
| 11 |
10
|
ptuni |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 12 |
1 2 11
|
syl2anc |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 13 |
12
|
ineq1d |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( ∪ ( ∏t ‘ 𝐹 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 14 |
|
pttop |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ Top ) → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( ∏t ‘ 𝐹 ) ∈ Top ) |
| 16 |
|
sseq1 |
⊢ ( 𝐶 = if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ↔ if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 17 |
|
sseq1 |
⊢ ( ∪ ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ↔ if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 |
|
simpl |
⊢ ( ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ∧ 𝑘 = 𝑥 ) → 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 19 |
|
ssidd |
⊢ ( ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ∧ ¬ 𝑘 = 𝑥 ) → ∪ ( 𝐹 ‘ 𝑘 ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 20 |
16 17 18 19
|
ifbothda |
⊢ ( 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 21 |
20
|
ralimi |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 22 |
|
ss2ixp |
⊢ ( ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( 𝐹 ‘ 𝑘 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 23 |
7 21 22
|
3syl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 25 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( ∏t ‘ 𝐹 ) ) |
| 26 |
24 25
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ) |
| 27 |
12
|
eqcomd |
⊢ ( 𝜑 → ∪ ( ∏t ‘ 𝐹 ) = X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 28 |
27
|
difeq1d |
⊢ ( 𝜑 → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 30 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
| 31 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 32 |
|
boxcutc |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ⊆ ∪ ( 𝐹 ‘ 𝑘 ) ) → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 34 |
|
ixpeq2 |
⊢ ( ∀ 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 36 |
35
|
unieqd |
⊢ ( 𝑘 = 𝑥 → ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑥 ) ) |
| 37 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑥 → 𝐶 = ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) |
| 38 |
36 37
|
difeq12d |
⊢ ( 𝑘 = 𝑥 → ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) = ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝑘 = 𝑥 ) → ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) = ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ) |
| 40 |
39
|
ifeq1da |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 41 |
34 40
|
mprg |
⊢ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 43 |
29 33 42
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) = X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 44 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ 𝑉 ) |
| 45 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ Top ) |
| 46 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 47 |
|
nfv |
⊢ Ⅎ 𝑥 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) |
| 48 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 |
| 49 |
48
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) |
| 50 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑥 → ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) = ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 51 |
37 50
|
eleq12d |
⊢ ( 𝑘 = 𝑥 → ( 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 52 |
47 49 51
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 53 |
46 52
|
sylib |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 54 |
53
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 55 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑥 ) = ∪ ( 𝐹 ‘ 𝑥 ) |
| 56 |
55
|
cldopn |
⊢ ( ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ∈ ( Clsd ‘ ( 𝐹 ‘ 𝑥 ) ) → ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 57 |
54 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) ∈ ( 𝐹 ‘ 𝑥 ) ) |
| 58 |
44 45 57
|
ptopn2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , ( ∪ ( 𝐹 ‘ 𝑥 ) ∖ ⦋ 𝑥 / 𝑘 ⦌ 𝐶 ) , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ∏t ‘ 𝐹 ) ) |
| 59 |
43 58
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) |
| 60 |
|
eqid |
⊢ ∪ ( ∏t ‘ 𝐹 ) = ∪ ( ∏t ‘ 𝐹 ) |
| 61 |
60
|
iscld |
⊢ ( ( ∏t ‘ 𝐹 ) ∈ Top → ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ↔ ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) ) ) |
| 62 |
15 61
|
syl |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ↔ ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ↔ ( X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ⊆ ∪ ( ∏t ‘ 𝐹 ) ∧ ( ∪ ( ∏t ‘ 𝐹 ) ∖ X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( ∏t ‘ 𝐹 ) ) ) ) |
| 64 |
26 59 63
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 65 |
64
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 66 |
60
|
riincld |
⊢ ( ( ( ∏t ‘ 𝐹 ) ∈ Top ∧ ∀ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) → ( ∪ ( ∏t ‘ 𝐹 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 67 |
15 65 66
|
syl2anc |
⊢ ( 𝜑 → ( ∪ ( ∏t ‘ 𝐹 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 68 |
13 67
|
eqeltrd |
⊢ ( 𝜑 → ( X 𝑘 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑘 ) ∩ ∩ 𝑥 ∈ 𝐴 X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑥 , 𝐶 , ∪ ( 𝐹 ‘ 𝑘 ) ) ) ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |
| 69 |
9 68
|
eqeltrd |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 𝐶 ∈ ( Clsd ‘ ( ∏t ‘ 𝐹 ) ) ) |