| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) |
| 2 |
|
rrxbase.b |
⊢ 𝐵 = ( Base ‘ 𝐻 ) |
| 3 |
1 2
|
rrxprds |
⊢ ( 𝐼 ∈ 𝑉 → 𝐻 = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ 𝐻 ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) ) |
| 5 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) |
| 6 |
|
eqid |
⊢ ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) |
| 7 |
5 6
|
tcphip |
⊢ ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( ·𝑖 ‘ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 8 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 9 |
|
eqid |
⊢ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) = ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) |
| 10 |
|
eqid |
⊢ ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) |
| 11 |
9 10
|
ressip |
⊢ ( 𝐵 ∈ V → ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) |
| 12 |
8 11
|
ax-mp |
⊢ ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) |
| 13 |
|
eqid |
⊢ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) = ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) |
| 14 |
|
refld |
⊢ ℝfld ∈ Field |
| 15 |
14
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ℝfld ∈ Field ) |
| 16 |
|
snex |
⊢ { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ∈ V |
| 17 |
|
xpexg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ∈ V ) → ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ∈ V ) |
| 18 |
16 17
|
mpan2 |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ∈ V ) |
| 19 |
|
eqid |
⊢ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) |
| 20 |
|
fvex |
⊢ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ∈ V |
| 21 |
20
|
snnz |
⊢ { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ≠ ∅ |
| 22 |
|
dmxp |
⊢ ( { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ≠ ∅ → dom ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) = 𝐼 ) |
| 23 |
21 22
|
ax-mp |
⊢ dom ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) = 𝐼 |
| 24 |
23
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → dom ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) = 𝐼 ) |
| 25 |
13 15 18 19 24 10
|
prdsip |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( 𝑓 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 26 |
13 15 18 19 24
|
prdsbas |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ) |
| 27 |
|
eqidd |
⊢ ( 𝑥 ∈ 𝐼 → ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 28 |
|
rebase |
⊢ ℝ = ( Base ‘ ℝfld ) |
| 29 |
28
|
eqimssi |
⊢ ℝ ⊆ ( Base ‘ ℝfld ) |
| 30 |
29
|
a1i |
⊢ ( 𝑥 ∈ 𝐼 → ℝ ⊆ ( Base ‘ ℝfld ) ) |
| 31 |
27 30
|
srabase |
⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ℝfld ) = ( Base ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) ) |
| 32 |
28
|
a1i |
⊢ ( 𝑥 ∈ 𝐼 → ℝ = ( Base ‘ ℝfld ) ) |
| 33 |
20
|
fvconst2 |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) = ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) |
| 34 |
33
|
fveq2d |
⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = ( Base ‘ ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) ) ) |
| 35 |
31 32 34
|
3eqtr4rd |
⊢ ( 𝑥 ∈ 𝐼 → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = ℝ ) |
| 36 |
35
|
adantl |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) → ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = ℝ ) |
| 37 |
36
|
ixpeq2dva |
⊢ ( 𝐼 ∈ 𝑉 → X 𝑥 ∈ 𝐼 ( Base ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐼 ℝ ) |
| 38 |
|
reex |
⊢ ℝ ∈ V |
| 39 |
|
ixpconstg |
⊢ ( ( 𝐼 ∈ 𝑉 ∧ ℝ ∈ V ) → X 𝑥 ∈ 𝐼 ℝ = ( ℝ ↑m 𝐼 ) ) |
| 40 |
38 39
|
mpan2 |
⊢ ( 𝐼 ∈ 𝑉 → X 𝑥 ∈ 𝐼 ℝ = ( ℝ ↑m 𝐼 ) ) |
| 41 |
26 37 40
|
3eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( ℝ ↑m 𝐼 ) ) |
| 42 |
|
remulr |
⊢ · = ( .r ‘ ℝfld ) |
| 43 |
33 30
|
sraip |
⊢ ( 𝑥 ∈ 𝐼 → ( .r ‘ ℝfld ) = ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ) |
| 44 |
42 43
|
eqtr2id |
⊢ ( 𝑥 ∈ 𝐼 → ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) = · ) |
| 45 |
44
|
oveqd |
⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 46 |
45
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) |
| 47 |
46
|
a1i |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) |
| 48 |
47
|
oveq2d |
⊢ ( 𝐼 ∈ 𝑉 → ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) = ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) |
| 49 |
41 41 48
|
mpoeq123dv |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) , 𝑔 ∈ ( Base ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) ( ·𝑖 ‘ ( ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ‘ 𝑥 ) ) ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 50 |
25 49
|
eqtrd |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 51 |
12 50
|
eqtr3id |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 52 |
7 51
|
eqtr3id |
⊢ ( 𝐼 ∈ 𝑉 → ( ·𝑖 ‘ ( toℂPreHil ‘ ( ( ℝfld Xs ( 𝐼 × { ( ( subringAlg ‘ ℝfld ) ‘ ℝ ) } ) ) ↾s 𝐵 ) ) ) = ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) ) |
| 53 |
4 52
|
eqtr2d |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) , 𝑔 ∈ ( ℝ ↑m 𝐼 ) ↦ ( ℝfld Σg ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑔 ‘ 𝑥 ) ) ) ) ) = ( ·𝑖 ‘ 𝐻 ) ) |