Step |
Hyp |
Ref |
Expression |
1 |
|
upixp.1 |
⊢ 𝑋 = X 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) |
2 |
|
upixp.2 |
⊢ 𝑃 = ( 𝑤 ∈ 𝐴 ↦ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑤 ) ) ) |
3 |
|
mptexg |
⊢ ( 𝐵 ∈ 𝑆 → ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ∈ V ) |
4 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ∈ V ) |
5 |
|
ffvelrn |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ) |
6 |
5
|
expcom |
⊢ ( 𝑢 ∈ 𝐵 → ( ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) → ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ) ) |
7 |
6
|
ralimdv |
⊢ ( 𝑢 ∈ 𝐵 → ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) → ∀ 𝑎 ∈ 𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ) ) |
8 |
7
|
impcom |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ∧ 𝑢 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ) |
9 |
8
|
3ad2antl3 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑢 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑎 = 𝑠 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑠 ) ) |
11 |
10
|
fveq1d |
⊢ ( 𝑎 = 𝑠 → ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑎 = 𝑠 → ( 𝐶 ‘ 𝑎 ) = ( 𝐶 ‘ 𝑠 ) ) |
13 |
11 12
|
eleq12d |
⊢ ( 𝑎 = 𝑠 → ( ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ↔ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑠 ) ) ) |
14 |
13
|
cbvralvw |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑎 ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑠 ) ) |
15 |
9 14
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑢 ∈ 𝐵 ) → ∀ 𝑠 ∈ 𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑠 ) ) |
16 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑢 ∈ 𝐵 ) → 𝐴 ∈ 𝑅 ) |
17 |
|
mptelixpg |
⊢ ( 𝐴 ∈ 𝑅 → ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ∈ X 𝑠 ∈ 𝐴 ( 𝐶 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑠 ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ∈ X 𝑠 ∈ 𝐴 ( 𝐶 ‘ 𝑠 ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ∈ ( 𝐶 ‘ 𝑠 ) ) ) |
19 |
15 18
|
mpbird |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ∈ X 𝑠 ∈ 𝐴 ( 𝐶 ‘ 𝑠 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑏 = 𝑠 → ( 𝐶 ‘ 𝑏 ) = ( 𝐶 ‘ 𝑠 ) ) |
21 |
20
|
cbvixpv |
⊢ X 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) = X 𝑠 ∈ 𝐴 ( 𝐶 ‘ 𝑠 ) |
22 |
1 21
|
eqtri |
⊢ 𝑋 = X 𝑠 ∈ 𝐴 ( 𝐶 ‘ 𝑠 ) |
23 |
19 22
|
eleqtrrdi |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ∈ 𝑋 ) |
24 |
23
|
fmpttd |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋 ) |
25 |
|
nfv |
⊢ Ⅎ 𝑎 𝐴 ∈ 𝑅 |
26 |
|
nfv |
⊢ Ⅎ 𝑎 𝐵 ∈ 𝑆 |
27 |
|
nfra1 |
⊢ Ⅎ 𝑎 ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) |
28 |
25 26 27
|
nf3an |
⊢ Ⅎ 𝑎 ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) |
29 |
|
fveq2 |
⊢ ( 𝑠 = 𝑎 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑎 ) ) |
30 |
29
|
fveq1d |
⊢ ( 𝑠 = 𝑎 → ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) = ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) |
31 |
|
eqid |
⊢ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) = ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) |
32 |
|
fvex |
⊢ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ∈ V |
33 |
30 31 32
|
fvmpt3i |
⊢ ( 𝑎 ∈ 𝐴 → ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) |
35 |
34
|
mpteq2dv |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐵 ↦ ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) ) = ( 𝑢 ∈ 𝐵 ↦ ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) ) |
36 |
23
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ∈ 𝑋 ) |
37 |
|
eqidd |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) |
38 |
|
fveq2 |
⊢ ( 𝑤 = 𝑎 → ( 𝑥 ‘ 𝑤 ) = ( 𝑥 ‘ 𝑎 ) ) |
39 |
38
|
mpteq2dv |
⊢ ( 𝑤 = 𝑎 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑎 ) ) ) |
40 |
|
fvex |
⊢ ( 𝐶 ‘ 𝑏 ) ∈ V |
41 |
40
|
rgenw |
⊢ ∀ 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) ∈ V |
42 |
|
ixpexg |
⊢ ( ∀ 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) ∈ V → X 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) ∈ V ) |
43 |
41 42
|
ax-mp |
⊢ X 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) ∈ V |
44 |
1 43
|
eqeltri |
⊢ 𝑋 ∈ V |
45 |
44
|
mptex |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑤 ) ) ∈ V |
46 |
39 2 45
|
fvmpt3i |
⊢ ( 𝑎 ∈ 𝐴 → ( 𝑃 ‘ 𝑎 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑎 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝑃 ‘ 𝑎 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑎 ) ) ) |
48 |
|
fveq1 |
⊢ ( 𝑥 = ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) → ( 𝑥 ‘ 𝑎 ) = ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) ) |
49 |
36 37 47 48
|
fmptco |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) = ( 𝑢 ∈ 𝐵 ↦ ( ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) ) ) |
50 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) → ( 𝑎 ∈ 𝐴 → ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ) |
51 |
50
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ( 𝑎 ∈ 𝐴 → ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ) |
52 |
51
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) |
53 |
52
|
feqmptd |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝑢 ∈ 𝐵 ↦ ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) ) |
54 |
35 49 53
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) |
55 |
54
|
ex |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ( 𝑎 ∈ 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) |
56 |
28 55
|
ralrimi |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) |
57 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) → ℎ : 𝐵 ⟶ 𝑋 ) |
58 |
57
|
feqmptd |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) → ℎ = ( 𝑢 ∈ 𝐵 ↦ ( ℎ ‘ 𝑢 ) ) ) |
59 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) |
60 |
|
fveq2 |
⊢ ( 𝑎 = 𝑠 → ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑠 ) ) |
61 |
60
|
coeq1d |
⊢ ( 𝑎 = 𝑠 → ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) = ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ) |
62 |
10 61
|
eqeq12d |
⊢ ( 𝑎 = 𝑠 → ( ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ↔ ( 𝐹 ‘ 𝑠 ) = ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ) ) |
63 |
62
|
rspccva |
⊢ ( ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑠 ) = ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ) |
64 |
59 63
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑠 ) = ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ) |
65 |
64
|
fveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) = ( ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ‘ 𝑢 ) ) |
66 |
|
fvco3 |
⊢ ( ( ℎ : 𝐵 ⟶ 𝑋 ∧ 𝑢 ∈ 𝐵 ) → ( ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ‘ 𝑢 ) = ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) ) |
67 |
57 66
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ‘ 𝑢 ) = ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) ) |
68 |
67
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( 𝑃 ‘ 𝑠 ) ∘ ℎ ) ‘ 𝑢 ) = ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) ) |
69 |
|
fveq2 |
⊢ ( 𝑤 = 𝑠 → ( 𝑥 ‘ 𝑤 ) = ( 𝑥 ‘ 𝑠 ) ) |
70 |
69
|
mpteq2dv |
⊢ ( 𝑤 = 𝑠 → ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑤 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ) |
71 |
70 2 45
|
fvmpt3i |
⊢ ( 𝑠 ∈ 𝐴 → ( 𝑃 ‘ 𝑠 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ) |
72 |
71
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑃 ‘ 𝑠 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ) |
73 |
72
|
fveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) = ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) ) ) |
74 |
|
ffvelrn |
⊢ ( ( ℎ : 𝐵 ⟶ 𝑋 ∧ 𝑢 ∈ 𝐵 ) → ( ℎ ‘ 𝑢 ) ∈ 𝑋 ) |
75 |
57 74
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ℎ ‘ 𝑢 ) ∈ 𝑋 ) |
76 |
|
fveq1 |
⊢ ( 𝑥 = ( ℎ ‘ 𝑢 ) → ( 𝑥 ‘ 𝑠 ) = ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) |
77 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) |
78 |
|
fvex |
⊢ ( 𝑥 ‘ 𝑠 ) ∈ V |
79 |
76 77 78
|
fvmpt3i |
⊢ ( ( ℎ ‘ 𝑢 ) ∈ 𝑋 → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) ) = ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) |
80 |
75 79
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) ) = ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) |
81 |
80
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) ) = ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) |
82 |
73 81
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) = ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) |
83 |
65 68 82
|
3eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) = ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) |
84 |
83
|
mpteq2dva |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) = ( 𝑠 ∈ 𝐴 ↦ ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) ) |
85 |
75 1
|
eleqtrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ℎ ‘ 𝑢 ) ∈ X 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) ) |
86 |
|
ixpfn |
⊢ ( ( ℎ ‘ 𝑢 ) ∈ X 𝑏 ∈ 𝐴 ( 𝐶 ‘ 𝑏 ) → ( ℎ ‘ 𝑢 ) Fn 𝐴 ) |
87 |
85 86
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ℎ ‘ 𝑢 ) Fn 𝐴 ) |
88 |
|
dffn5 |
⊢ ( ( ℎ ‘ 𝑢 ) Fn 𝐴 ↔ ( ℎ ‘ 𝑢 ) = ( 𝑠 ∈ 𝐴 ↦ ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) ) |
89 |
87 88
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( ℎ ‘ 𝑢 ) = ( 𝑠 ∈ 𝐴 ↦ ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) ) |
90 |
84 89
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) ∧ 𝑢 ∈ 𝐵 ) → ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) = ( ℎ ‘ 𝑢 ) ) |
91 |
90
|
mpteq2dva |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) → ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) = ( 𝑢 ∈ 𝐵 ↦ ( ℎ ‘ 𝑢 ) ) ) |
92 |
58 91
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ∧ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) → ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) |
93 |
92
|
ex |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ( ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) → ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) |
94 |
93
|
alrimiv |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ∀ ℎ ( ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) → ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) |
95 |
|
feq1 |
⊢ ( ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) → ( ℎ : 𝐵 ⟶ 𝑋 ↔ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋 ) ) |
96 |
|
coeq2 |
⊢ ( ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) → ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) |
97 |
96
|
eqeq2d |
⊢ ( ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ↔ ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) |
98 |
97
|
ralbidv |
⊢ ( ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) → ( ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ↔ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) |
99 |
95 98
|
anbi12d |
⊢ ( ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) → ( ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ↔ ( ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) ) |
100 |
99
|
eqeu |
⊢ ( ( ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ∈ V ∧ ( ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ∧ ∀ ℎ ( ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) → ℎ = ( 𝑢 ∈ 𝐵 ↦ ( 𝑠 ∈ 𝐴 ↦ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) → ∃! ℎ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) |
101 |
4 24 56 94 100
|
syl121anc |
⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) → ∃! ℎ ( ℎ : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑎 ∈ 𝐴 ( 𝐹 ‘ 𝑎 ) = ( ( 𝑃 ‘ 𝑎 ) ∘ ℎ ) ) ) |