| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upixp.1 | ⊢ 𝑋  =  X 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 ) | 
						
							| 2 |  | upixp.2 | ⊢ 𝑃  =  ( 𝑤  ∈  𝐴  ↦  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑤 ) ) ) | 
						
							| 3 |  | mptexg | ⊢ ( 𝐵  ∈  𝑆  →  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  ∈  V ) | 
						
							| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  ∈  V ) | 
						
							| 5 |  | ffvelcdm | ⊢ ( ( ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 )  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 ) ) | 
						
							| 6 | 5 | expcom | ⊢ ( 𝑢  ∈  𝐵  →  ( ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 )  →  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 ) ) ) | 
						
							| 7 | 6 | ralimdv | ⊢ ( 𝑢  ∈  𝐵  →  ( ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 )  →  ∀ 𝑎  ∈  𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 ) ) ) | 
						
							| 8 | 7 | impcom | ⊢ ( ( ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 )  ∧  𝑢  ∈  𝐵 )  →  ∀ 𝑎  ∈  𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 ) ) | 
						
							| 9 | 8 | 3ad2antl3 | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑢  ∈  𝐵 )  →  ∀ 𝑎  ∈  𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑎  =  𝑠  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝐹 ‘ 𝑠 ) ) | 
						
							| 11 | 10 | fveq1d | ⊢ ( 𝑎  =  𝑠  →  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  =  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) | 
						
							| 12 |  | fveq2 | ⊢ ( 𝑎  =  𝑠  →  ( 𝐶 ‘ 𝑎 )  =  ( 𝐶 ‘ 𝑠 ) ) | 
						
							| 13 | 11 12 | eleq12d | ⊢ ( 𝑎  =  𝑠  →  ( ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 )  ↔  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑠 ) ) ) | 
						
							| 14 | 13 | cbvralvw | ⊢ ( ∀ 𝑎  ∈  𝐴 ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑎 )  ↔  ∀ 𝑠  ∈  𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑠 ) ) | 
						
							| 15 | 9 14 | sylib | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑢  ∈  𝐵 )  →  ∀ 𝑠  ∈  𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑠 ) ) | 
						
							| 16 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑢  ∈  𝐵 )  →  𝐴  ∈  𝑅 ) | 
						
							| 17 |  | mptelixpg | ⊢ ( 𝐴  ∈  𝑅  →  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  ∈  X 𝑠  ∈  𝐴 ( 𝐶 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑠 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  ∈  X 𝑠  ∈  𝐴 ( 𝐶 ‘ 𝑠 )  ↔  ∀ 𝑠  ∈  𝐴 ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  ∈  ( 𝐶 ‘ 𝑠 ) ) ) | 
						
							| 19 | 15 18 | mpbird | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑢  ∈  𝐵 )  →  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  ∈  X 𝑠  ∈  𝐴 ( 𝐶 ‘ 𝑠 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑏  =  𝑠  →  ( 𝐶 ‘ 𝑏 )  =  ( 𝐶 ‘ 𝑠 ) ) | 
						
							| 21 | 20 | cbvixpv | ⊢ X 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 )  =  X 𝑠  ∈  𝐴 ( 𝐶 ‘ 𝑠 ) | 
						
							| 22 | 1 21 | eqtri | ⊢ 𝑋  =  X 𝑠  ∈  𝐴 ( 𝐶 ‘ 𝑠 ) | 
						
							| 23 | 19 22 | eleqtrrdi | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑢  ∈  𝐵 )  →  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  ∈  𝑋 ) | 
						
							| 24 | 23 | fmpttd | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋 ) | 
						
							| 25 |  | nfv | ⊢ Ⅎ 𝑎 𝐴  ∈  𝑅 | 
						
							| 26 |  | nfv | ⊢ Ⅎ 𝑎 𝐵  ∈  𝑆 | 
						
							| 27 |  | nfra1 | ⊢ Ⅎ 𝑎 ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) | 
						
							| 28 | 25 26 27 | nf3an | ⊢ Ⅎ 𝑎 ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑠  =  𝑎  →  ( 𝐹 ‘ 𝑠 )  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( 𝑠  =  𝑎  →  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  =  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  =  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) | 
						
							| 32 |  | fvex | ⊢ ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  ∈  V | 
						
							| 33 | 30 31 32 | fvmpt3i | ⊢ ( 𝑎  ∈  𝐴  →  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) | 
						
							| 35 | 34 | mpteq2dv | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑢  ∈  𝐵  ↦  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) )  =  ( 𝑢  ∈  𝐵  ↦  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) ) | 
						
							| 36 | 23 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  ∧  𝑢  ∈  𝐵 )  →  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  ∈  𝑋 ) | 
						
							| 37 |  | eqidd | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) | 
						
							| 38 |  | fveq2 | ⊢ ( 𝑤  =  𝑎  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑥 ‘ 𝑎 ) ) | 
						
							| 39 | 38 | mpteq2dv | ⊢ ( 𝑤  =  𝑎  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑎 ) ) ) | 
						
							| 40 |  | fvex | ⊢ ( 𝐶 ‘ 𝑏 )  ∈  V | 
						
							| 41 | 40 | rgenw | ⊢ ∀ 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 )  ∈  V | 
						
							| 42 |  | ixpexg | ⊢ ( ∀ 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 )  ∈  V  →  X 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 )  ∈  V ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ X 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 )  ∈  V | 
						
							| 44 | 1 43 | eqeltri | ⊢ 𝑋  ∈  V | 
						
							| 45 | 44 | mptex | ⊢ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑤 ) )  ∈  V | 
						
							| 46 | 39 2 45 | fvmpt3i | ⊢ ( 𝑎  ∈  𝐴  →  ( 𝑃 ‘ 𝑎 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑎 ) ) ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑃 ‘ 𝑎 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑎 ) ) ) | 
						
							| 48 |  | fveq1 | ⊢ ( 𝑥  =  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  →  ( 𝑥 ‘ 𝑎 )  =  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) ) | 
						
							| 49 | 36 37 47 48 | fmptco | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) )  =  ( 𝑢  ∈  𝐵  ↦  ( ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ‘ 𝑎 ) ) ) | 
						
							| 50 |  | rsp | ⊢ ( ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 )  →  ( 𝑎  ∈  𝐴  →  ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ) | 
						
							| 51 | 50 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ( 𝑎  ∈  𝐴  →  ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) ) | 
						
							| 52 | 51 | imp | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) ) | 
						
							| 53 | 52 | feqmptd | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  =  ( 𝑢  ∈  𝐵  ↦  ( ( 𝐹 ‘ 𝑎 ) ‘ 𝑢 ) ) ) | 
						
							| 54 | 35 49 53 | 3eqtr4rd | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ( 𝑎  ∈  𝐴  →  ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) | 
						
							| 56 | 28 55 | ralrimi | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) | 
						
							| 57 |  | simprl | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  →  ℎ : 𝐵 ⟶ 𝑋 ) | 
						
							| 58 | 57 | feqmptd | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  →  ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( ℎ ‘ 𝑢 ) ) ) | 
						
							| 59 |  | simplrr | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑎  =  𝑠  →  ( 𝑃 ‘ 𝑎 )  =  ( 𝑃 ‘ 𝑠 ) ) | 
						
							| 61 | 60 | coeq1d | ⊢ ( 𝑎  =  𝑠  →  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ )  =  ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ) | 
						
							| 62 | 10 61 | eqeq12d | ⊢ ( 𝑎  =  𝑠  →  ( ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ )  ↔  ( 𝐹 ‘ 𝑠 )  =  ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ) ) | 
						
							| 63 | 62 | rspccva | ⊢ ( ( ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ )  ∧  𝑠  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑠 )  =  ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ) | 
						
							| 64 | 59 63 | sylan | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑠 )  =  ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ) | 
						
							| 65 | 64 | fveq1d | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  =  ( ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ‘ 𝑢 ) ) | 
						
							| 66 |  | fvco3 | ⊢ ( ( ℎ : 𝐵 ⟶ 𝑋  ∧  𝑢  ∈  𝐵 )  →  ( ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ‘ 𝑢 )  =  ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) ) | 
						
							| 67 | 57 66 | sylan | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ‘ 𝑢 )  =  ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( ( ( 𝑃 ‘ 𝑠 )  ∘  ℎ ) ‘ 𝑢 )  =  ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑤  =  𝑠  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑥 ‘ 𝑠 ) ) | 
						
							| 70 | 69 | mpteq2dv | ⊢ ( 𝑤  =  𝑠  →  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑤 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ) | 
						
							| 71 | 70 2 45 | fvmpt3i | ⊢ ( 𝑠  ∈  𝐴  →  ( 𝑃 ‘ 𝑠 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝑃 ‘ 𝑠 )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ) | 
						
							| 73 | 72 | fveq1d | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) )  =  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) ) ) | 
						
							| 74 |  | ffvelcdm | ⊢ ( ( ℎ : 𝐵 ⟶ 𝑋  ∧  𝑢  ∈  𝐵 )  →  ( ℎ ‘ 𝑢 )  ∈  𝑋 ) | 
						
							| 75 | 57 74 | sylan | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ℎ ‘ 𝑢 )  ∈  𝑋 ) | 
						
							| 76 |  | fveq1 | ⊢ ( 𝑥  =  ( ℎ ‘ 𝑢 )  →  ( 𝑥 ‘ 𝑠 )  =  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) | 
						
							| 77 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) )  =  ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) | 
						
							| 78 |  | fvex | ⊢ ( 𝑥 ‘ 𝑠 )  ∈  V | 
						
							| 79 | 76 77 78 | fvmpt3i | ⊢ ( ( ℎ ‘ 𝑢 )  ∈  𝑋  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) )  =  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) | 
						
							| 80 | 75 79 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) )  =  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝑥  ∈  𝑋  ↦  ( 𝑥 ‘ 𝑠 ) ) ‘ ( ℎ ‘ 𝑢 ) )  =  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) | 
						
							| 82 | 73 81 | eqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝑃 ‘ 𝑠 ) ‘ ( ℎ ‘ 𝑢 ) )  =  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) | 
						
							| 83 | 65 68 82 | 3eqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 )  =  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) | 
						
							| 84 | 83 | mpteq2dva | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  =  ( 𝑠  ∈  𝐴  ↦  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) ) | 
						
							| 85 | 75 1 | eleqtrdi | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ℎ ‘ 𝑢 )  ∈  X 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 ) ) | 
						
							| 86 |  | ixpfn | ⊢ ( ( ℎ ‘ 𝑢 )  ∈  X 𝑏  ∈  𝐴 ( 𝐶 ‘ 𝑏 )  →  ( ℎ ‘ 𝑢 )  Fn  𝐴 ) | 
						
							| 87 | 85 86 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ℎ ‘ 𝑢 )  Fn  𝐴 ) | 
						
							| 88 |  | dffn5 | ⊢ ( ( ℎ ‘ 𝑢 )  Fn  𝐴  ↔  ( ℎ ‘ 𝑢 )  =  ( 𝑠  ∈  𝐴  ↦  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) ) | 
						
							| 89 | 87 88 | sylib | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( ℎ ‘ 𝑢 )  =  ( 𝑠  ∈  𝐴  ↦  ( ( ℎ ‘ 𝑢 ) ‘ 𝑠 ) ) ) | 
						
							| 90 | 84 89 | eqtr4d | ⊢ ( ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  ∧  𝑢  ∈  𝐵 )  →  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) )  =  ( ℎ ‘ 𝑢 ) ) | 
						
							| 91 | 90 | mpteq2dva | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  →  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  =  ( 𝑢  ∈  𝐵  ↦  ( ℎ ‘ 𝑢 ) ) ) | 
						
							| 92 | 58 91 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  ∧  ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) )  →  ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) | 
						
							| 93 | 92 | ex | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ( ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) )  →  ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) | 
						
							| 94 | 93 | alrimiv | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ∀ ℎ ( ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) )  →  ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) | 
						
							| 95 |  | feq1 | ⊢ ( ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  →  ( ℎ : 𝐵 ⟶ 𝑋  ↔  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋 ) ) | 
						
							| 96 |  | coeq2 | ⊢ ( ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  →  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) | 
						
							| 97 | 96 | eqeq2d | ⊢ ( ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  →  ( ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ )  ↔  ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) | 
						
							| 98 | 97 | ralbidv | ⊢ ( ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  →  ( ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ )  ↔  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) | 
						
							| 99 | 95 98 | anbi12d | ⊢ ( ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  →  ( ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) )  ↔  ( ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) ) ) ) | 
						
							| 100 | 99 | eqeu | ⊢ ( ( ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) )  ∈  V  ∧  ( ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) )  ∧  ∀ ℎ ( ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) )  →  ℎ  =  ( 𝑢  ∈  𝐵  ↦  ( 𝑠  ∈  𝐴  ↦  ( ( 𝐹 ‘ 𝑠 ) ‘ 𝑢 ) ) ) ) )  →  ∃! ℎ ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) ) | 
						
							| 101 | 4 24 56 94 100 | syl121anc | ⊢ ( ( 𝐴  ∈  𝑅  ∧  𝐵  ∈  𝑆  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 ) : 𝐵 ⟶ ( 𝐶 ‘ 𝑎 ) )  →  ∃! ℎ ( ℎ : 𝐵 ⟶ 𝑋  ∧  ∀ 𝑎  ∈  𝐴 ( 𝐹 ‘ 𝑎 )  =  ( ( 𝑃 ‘ 𝑎 )  ∘  ℎ ) ) ) |